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Abstract—Computational scientists seek to provide efficient, easy-to-use tools
and frameworks that enable application scientists within a specific discipline to
build and/or apply numerical models with up-to-date computing technologies
that can be executed on all available computing systems. Although many tools
could be useful for groups beyond a specific application, it is often difficult and
time consuming to combine existing software, or to adapt it for a more general
purpose. Python enables a high-level approach where a general framework can
be supplemented with tools written for different fields and in different languages.
This is particularly important when a large number of tools are necessary, as is
the case for high performance scientific codes. This motivated our development
of PetClaw, a scalable distributed-memory solver for time-dependent nonlinear
wave propagation, as a case-study for how Python can be used as a high-
level framework leveraging a multitude of codes, efficient both in the reuse of
code and programmer productivity. We present scaling results for computations
on up to four racks of Shaheen, an IBM BlueGene/P supercomputer at King
Abdullah University of Science and Technology. One particularly important issue
that PetClaw has faced is the overhead associated with dynamic loading leading
to catastrophic scaling. We use the walla library to solve the issue which does
so by supplanting high-cost filesystem calls with MPI operations at a low enough
level that developers may avoid any changes to their codes.

Index Terms—parallel, scaling, finite volume, nonlinear waves, PyClaw, Pet-
Claw, Walla

Introduction

Nowadays, highly efficient, robust, and reliable open source
implementations of many numerical algorithms are available
to computational scientists. However, different tools needed
for a single project may not be available in a single package
and may even be implemented in different programming lan-
guages. In this case, a common solution is to re-implement the
various tools required in yet another software package. This
approach is quite expensive in terms of effort, since a com-
pletely new code must be written, tested, and debugged. An
alternative approach is to bring together the existing software
tools by wrapping them in a small code based on abstractions
compatible with all of them and able to interface with each
programming language involved. The latter approach has the
advantage that only a small amount of relatively high-level
code needs to be written and debugged; the bulk of the work
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will still be done by the reliable, tested packages. In this
paper, PyClaw and PetClaw are presented as examples of
the philosophy that bridging well-established codes with high-
level maintainable code is an alternative approach that leads to
advantages in usability, extensibility, and maintainability when
compared to completely custom built scientific software.

PyClaw and PetClaw are implemented in the Python pro-
gramming language, and this choice of language has been
essential to their success, for multiple reasons. Python is an
interpreted scripting language that has become recognized in
the scientific computing community as a viable alternative
to Matlab, Octave, and other languages that are specialized
for scientific work [cai2005]. For instance, Python (with the
numpy package) possesses a natural and inuitive syntax for
mathematical operations, has a built-in user-friendly interac-
tive debugger, and allows simulation and visualization to be
integrated into a single environment. At the same time, Python
is a powerful, elegant, and flexible language. Furthermore,
there exist many Python packages that make it simple to
incorporate code written in C, C++, and Fortran into Python
programs. Python has been suggested as particularly useful in
enabling reproducible computational research [leveque2009].

PyClaw and PetClaw Design and Implementation

PyClaw and PetClaw are designed to facilitate the imple-
mentation of new algorithms and methods in the existing
framework established in the well-known software package
Clawpack [clawpack]. Clawpack is used to solve linear and
nonlinear hyperbolic systems of partial differential equations
using a Godunov type method with limiters and is written
primarily in Fortran. It has been freely available since 1994
and has more than 7,000 registered users in a large variety of
applications. The goal in the design of PyClaw and PetClaw
is to provide interfaces to Clawpack that will facilitate the use
of advanced parallel strategies, algorithm improvements, and
other possible enhancements that may be field specific to the
original algorithms available in Clawpack.

PyClaw

PyClaw is based on the principles of abstraction and careful
definition of interfaces. These principles have allowed a broad
range of extensions to be developed for PyClaw in a short
period of time with wide success. The basic building blocks of
PyClaw involve the separation of the data structures represent-
ing the gridded data and the domain and the solution operators
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Fig. 1: PyClaw Solution structure.

that advance the gridded data to the end-time requested. Both
of these abstraction layers also implement accessors that can
be overridden to provide advance functionality, a feature used
in PetClaw.

The Solution class represents a snap-shot of the gridded
data at a single instance in time. The class acts as a container
object with possibly multiple Grid objects in the case of
adaptive mesh refinement or nested grids, both of which the
Clawpack algorithms are capable of. Furthermore, the Grid
objects also contain a set of Dimension objects that define the
domain that each Grid is defined on. Using this hierarchical
class structure allows the gridded data in PyClaw to not only
represent relatively arbitrarily complex gridded data but also
allows individual components of the data structures to be sub-
classed without the knowledge of the rest of the data structure.
This is why the implementation of a package like PetClaw is
as transparent as it is to the end-user. An example of a Solution
object can be seen in figure 1.

The Solver class is the numerical realization of a solution
operator mapping the initial condition, represented by a So-
lution object, to a later time. The base Solver class defines a
basic set of interfaces that must be implemented in order for
the infrastructure included in PyClaw to evolve the Solution
object forward in time. For instance, the routine:

evolve_to_time(solution,t)

will operate on the Solution object solution and do the
necessary operations to evolve it forward in time. This is
accomplished through appropriate time stepping in the base
Solver object and the definition of a step() routine that the
particular sub-class of Solver has implemented. This basic
algorithm can be seen in figure 2.

We expect the PyClaw code to be more easily maintainable
and extensible than Clawpack, for reasons based on the differ-
ence between the Fortran 77 and Python languages [logg2010].
Fortran 77 codes generally require very long lists of arguments
to subroutines, because of the lack of dynamic memory alloca-
tion and structured data types. This often leads to bugs when
a subroutine interface is changed, because it is challenging to
ensure that the function call is modified correctly throughout
the program. In contrast, Python allows the use of extremely
simple argument lists, since it has dynamic memory allocation,
is object-oriented, and allows for default argument values to be
pre-specified. This difference has already allowed the simple
integration of different algorithms into a single framework
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Fig. 2: PyClaw architecture flow with solver structures.

(PyClaw). The Fortran versions of these programs share only a
small fraction of code and require significantly different setup
by the user, but in PyClaw switching between them is trivial.

The solvers currently available are the 2nd-order algorithms
of Clawpack and the high order algorithms found in Sharp-
Claw [sharpclaw]. Clawpack is based on a Lax-Wendroff
approach plus TVD limiters, while SharpClaw is based on
a method of lines approach using weighted essentially non-
oscillatory (WENO) reconstruction and high order Runge-
Kutta methods. The abstract Solver class has been carefully
designed to allow these solvers to be swapped trivially, i.e. by
using either:

solver = pyclaw.ClawSolver2D()

for Clawpack, or:

solver = pyclaw.SharpClawSolver2D()

for SharpClaw. This allows the user to easily compare the
performance of different methods.

Another very useful abstraction managed by PyClaw is
that of the implementation language. The 1D PyClaw solvers
contain a complete implementation of both the Clawpack and
SharpClaw algorithms, written entirely in Python. This is
useful for rapidly prototyping, debugging, and testing mod-
ifications or new options, since new algorithms for hyperbolic
PDEs are typically developed in a 1D setting. Since this
code is written using numpy and vectorization, it is tolerably
fast, but still significantly slower than compiled C or Fortran
(vectorized numpy code is similar in speed to vectorized
MATLAB code). For production runs, the user can easily
switch to the more efficient wrapped Fortran codes. This is
handled simply by setting the kernel_language attribute of the
Solver object to "Python" or "Fortran" (the latter being the
default). Even more efficient CUDA implementations of these
kernels are in preparation. The benefit of this design is that the
user does not need to know multiple programming languages
in order to take advantage of different implementations.

PetClaw

Nilsen et. al. have suggested Python as a good high-level
language for use in parallelization of scientific codes because
it allows for extensive reuse of serial code and little effort
(related to parallelism) from the end user [nilsen2010].
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Fig. 3: Modular structure of the PetClaw code, with a focus on the
orthogonality of the Fortran kernels from the parallel decomposition
through PETSc.

PetClaw is designed to use PETSc to add parallel func-
tionality to PyClaw with both of these objectives in mind.
This means that the (serial) PyClaw code should not need
modification to accommodate PetClaw extensions and that
within PetClaw all parallel operations should be handled by
PETSc data structures in a way that is transparent to the user.
Python makes both of these goals achievable within an elegant
framework.

By implementing all necessary parallel code in Python,
Nilsen demonstrated approximately 90% parallel efficiency
for various applications on up to 50 processors. Because
we need to go three orders of magnitude further in parallel
scaling, PetClaw design goes beyond the approach suggested
in [nilsen2010] and related works, by handing off all parallel
operations to a widely used, robust library (PETSc) written in a
compiled language. Because PETSc is very actively developed
and maintained for use in many scientific codes and on many
hardware platforms, this also means that PetClaw developers
don’t have to worry about portability or maintenance of the
parallel routines and can instead focus on the numerical
algorithms that are particular to PetClaw.

An even more significant advantage gained by interfacing
with PETSc that may be leveraged in the future is access to
a variety of efficient parallel solvers.

Python language features and multiple inheritance have been
used to make running parallel simulations with PetClaw very
simple. The only difference between a serial PyClaw script
and a PetClaw script that runs on tens of thousands of cores
is exchanging:

import pyclaw

for:

import petclaw as pyclaw

Arrays for the solution and for coefficients that vary in space
are represented by numpy arrays in PyClaw but by a custom
distributed Vec class in PETSc. Using the property Python
language feature, this difference is completely transparent to
the user. Parallel solver classes are implemented via multiple
inheritance; in most cases, a parallel solver is created merely
by subclassing the corresponding serial solver as well as a
base parallel solver class PetSolver; no further attributes or

Fig. 4: Class inheritance diagram for PetClaw solvers.

methods need to be implemented. As a result, the entire
PetClaw extension consists of less than 300 lines of code.

Figre 4 shows how serial and parallel functionality, as well
as algorithmic and dimensional differences, are implemented
in an orthogonal way using class inheritance.

Software Engineering

One of the potential indirect benefits of developing a code
in Python is exposure to the generally high level of software
engineering practices maintained by the Python community.
Primarily as a result of this exposure, PyClaw includes a suite
of regression tests that currently cover 57% of the code and
are being expanded. The Python package nose is used to easily
run the tests or any desired subset of them. Code development
is coordinated using the distributed version control software
Git and the code hosting website Github. The project has
an active issue tracker where bugs are reported and new
features are suggested, as well as an online forum (petclaw-
dev@googlegroups.com) where more detailed discussions take
place. Finally, online documentation including both reference
material and tutorials is maintained using the Python package
Sphinx, which allows, among other things, for mathematical
expressions to be included in inline code documentation and
automatically rendered using LaTeX when viewed online.
While many of these practices and features would be taken for
granted in industrial codes, they are not standard in academic
scientific codes [wilson2006].

2D Performance Results

For PetClaw performance assessment with 2D problems, we
have conducted on-core serial experiments to compare the
performance of PetClaw code with the corresponding pure
Fortran code, Clawpack. We have also performed weak scaling
experiments to study the scalability of PetClaw on up to
four racks of the Shaheen system. Corresponding results for
PetClaw simulations in 1D may be found in [petclaw11].

On-Core Performance

We consider two systems of equations in our serial perfor-
mance tests. The first is the system of 2D linear acoustics
and the second is the 2D shallow water (SW) equations. The
acoustics test involves a very simple Riemann solver and is
intended to highlight any performance difficulties arising from
the Python code overhead. The shallow water test involves
a more typical, costly Riemann solver (specifically, a Roe
solver with entropy fix) and should be considered as more
representative of realistic nonlinear application problems.

mailto:petclaw-dev@googlegroups.com
mailto:petclaw-dev@googlegroups.com
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Processor Clawpack PetClaw Ratio
Acoustics Intel Xeon 28s 41s 1.5
Shallow Water Intel Xeon 79s 99s 1.3
Acoustics PowerPC

450
192s 316s 1.6

Shallow Water PowerPC
450

714s 800s 1.1

TABLE 1: Timing results in seconds for on-core serial experiment
of an acoustics and shallow water problems implemented in both
Clawpack and PetClaw for Intel Xeon and PowerPC 450 machines.

Table 1 shows an on-core serial comparison between the
Fortran-only Clawpack code and the corresponding hybrid
PetClaw implementation for two systems of equations in two
different platforms. Both codes rely on similar Fortran kernels
that differ only in the array layout. The tests on the first
platform were compiled for the x86_64 instruction set using
gfortran 4.5.1 (4.5.1 20100506 (prerelease)). Each result was
timed on a single core of a Quad-Core Intel Xeon 2.66GhZ
Mac Pro workstation equipped with 8x2 GB 1066MHz DDR3
RAM. The same tests were conducted on Shaheen, on a single
core of a Quad-Core PowerPC 450 processor with 4GB of
available RAM. IBM XLF 11.1 Fortran compiler was used to
produce a PowerPC 450d binray code in the latter platform.
On both platforms, the compiler optimization flag -O3 was
set. Because most of the computational cost is in executing
the low-level Fortran kernels, the difference in performance
is relatively minor with the difference owing primarily to the
Python overhead in PetClaw. Interestingly, while the relative
acoustics performance between the two codes was similar for
both versions of gfortran, a significant difference was observed
in the relative performance of the codes on the shallow water
example, depending on the compiler version.

Parallel Performance

In our parallel performance tests, we consider the same acous-
tics 2D linear system used in the serial runs to represent an
application where the communication over computation ratio
can be relatively high due to the simplicity of its Riemann
solver. We also tested 2D Euler equations of compressible fluid
dynamics as a more realistic nonlinear application problem
that has a relatively expensive Riemann solver.

Table 2 shows the execution time for both experiments as
the number of cores increases from one core up to 16 thousand
cores (four racks of BlueGene/P), with the ratio of work per
core fixed. The acoustics problem used involves 178 time steps
on a square grid with 160,000 (400x400) grid cells per core.
The Euler problem used involves 67 time steps on a grid also
with 160,000 grid cells per core. The first column for each test
indicates the simulation time excluding the load time required
to import Python modules. The second column indicates the
total simulation time, including Python module imports.

Excellent scaling is observed for both tests, apart from the
dynamic loading. Profiling of the acoustics example shows
that the small loss of efficiency is primarily due to the
communication of the CFL number, which requires a max
global reduce operation that is done each time step, and also

Acoustics Euler
Cores No. Evolve Solution Total Evolve Solution Total
1 76.7 154 98.9 124
4 69 152 101.1 123
16 71.7 164 103.2 142
64 73.7 217 103.0 184
256 74 407 103.4 465
1024 75 480 103.9 473
4096 76.6 898 104.9 953
16384 79.6 3707 112.9 3616

TABLE 2: Timing results in seconds from scaling comparisons of the
acoustics and Euler test problems for the time required for evolving
the solution and the communication between processes. The total
time includes the overhead due to the dynamic loading in Python
and reveals the catastrophic dynamic loading problem.
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Fig. 5: Parallel efficiency results of a 2D acoustics problem and a
2D Euler problem for evolving the solution to the final time. These
times does not include the dynamic load time of Python.

partly due to the communication of ghost cell values between
adjacent domains at each time step.

In contrast, the total job time reveals the very poor scaling
of the dynamic loading time. For the largest jobs considered,
this load time is roughly one hour, which is significant though
generally not excessive relative to typical simulation times,
since the CFL condition means that large simulations of hyper-
bolic problems necessarily require long run times in order for
waves to propagate across the full domain. Nevertheless, this
inefficiency remains as a disadvantage for high performance
Python codes. Although much longer simulations can to some
extent justify the start up time required for dynamic loading
of Python, this loading time severely impacts parallel scaling,
motivating the development of Walla to address this challenge.

Addressing the Catastrophic Loading Problem with Walla

Catastrophic scaling has been observed in applications written
in all languages when they perform dynamic linking and
loading on large distributed systems. Python applications are
particularly prone to poor scaling due to systems issues as they



DRAFT

USING PYTHON TO CONSTRUCT A SCALABLE PARALLEL NONLINEAR WAVE SOLVER 65

1 4 16 64 256 1024 4096 16384
Number of Processes

0

500

1000

1500

2000

2500

3000

3500

4000

T
im

e
 (

s)
Scaling Comparisons - Overall Times

Fig. 6: Weak scaling results of the previous acoustics run from figure
5 but including the entire time to completion.

tend to strongly exercise dynamic linking and loading. At the
same time, Python applications provide excellent models for
examining possible solutions to catastrophic dynamic link and
load times [pynamic2007].

Python applications are particularly prone to poor scaling
due to system overheads. They generally exercise the sort of
dynamic linking and loading that creates contention for file
data and metadata. In general, the farther you scale, the worse
the impact on application load times becomes. This problem is
well understood and benchmarks, such as in Lawrence Liver-
more National Laboratory’s Pynamic, which help to describe
and understand the extent to which an application may be
impacted on a particular system [pynamic2007]. Conversely,
Python applications can highlight the deficits and make it an
apt platform to explore solutions.

The CPython interpreter’s process for importing modules is
very I/O and metadata intensive. If dynamically linked, the
overhead of loading a module is further increased as Python
must work through the operating system software stack before
the interpreter may continue. This process is generally ignored
by Python developers as single system file I/O performance is
reasonable compared to the costs of computation. In large dis-
tributed systems used for scientific computation, the problem
is turned on its head with file I/O, unless parallel file I/O
is available, presenting a fairly substantial bottleneck. Even
where parallel I/O is available, the emphasis has been on the
reading and writing of application data in a way that optimizes
for file system bandwidth, generally favoring large reads and
writes.

Walla’s Approach

The Walla project attempts to take advantage of the high speed
interconnects normally used for interprocess communication to
speed dynamic loading without alteration of user codes. The
project originated on IBM’s Blue Gene/P platform where load
times at 8,192 nodes exceeded 45 minutes for a large Python
code called GPAW. Initial efforts were focused on using the
low-level interface to the Blue Gene/P’s high performance

networks with the goal of being able to use Walla to speed
all aspects of loading by coming in before the loading of
MPI libraries. Due to community interest and feedback, the
original codebase was abandoned in favor of using MPI for
all communications ensuring portability between systems and
eliminating any licensing restrictions created by use of vendor
code.

In the Walla design, the CPython importer and the glibc libdl
are replaced with versions that have been modified such that
only a single rank performs metadata intensive tasks and file
system I/O. Modifications are generally kept to a minimum
with fopen and stat being replaced with versions that rely
on MPI rank 0 to perform the actual fopen and stat calls,
then broadcast the result to all other nodes. While wasteful of
memory, the glibc fmemopen function is used to produce a file
handle returned by the fopen replacement. At no time do nodes
other than MPI rank 0 access Python modules or libraries
via the filesystem, eliminating much of the overhead and
contention that is caused by large number of ranks attempting
to perform loads simultaneously.

There are a handful of caveats to using Walla. First, users
must be in a situation where I/O is more expensive than broad-
cast operations. While initial numbers show no significant
performance hit from using Walla at small node counts, this
is not guaranteed. Second, MPI_Init must already be called
at the time Walla is first invoked. As Walla relies on MPI, it
cannot be used to load MPI itself. The file handle generated by
fmemopen does not contain and cannot be used to generate a
file descriptor as the file handle is created in user space and file
descriptors require the allocation of resources by the kernel.
While the the handle is sufficient for use with most codes, this
does create compatibility issues when an application contains
calls expecting a file descriptor. Finally, some thought has to be
given to the bandwidth available through I/O networks versus
the MPI broadcast otherwise it becomes easy to replace one
slow loading interface with another.

Despite the need for substantial reengineering of the
CPython importer internals, almost all changes should eventu-
ally be transparent to end users and require no changes to user
Python codes. The runtime environment requires changes to
the site.py to ensure the loading of MPI and replace the native
importer with the Walla importer. For compatibility reasons,
libdl is not completely replaced; users should link libwalla
before the glibc libdl to ensure that the symbols for dlopen,
dlsym, and dlclose resolve back to libwalla rather than libdl.

Blue Gene/P Implementation

The Blue Gene/P platform presents additional difficulties due
to I/O shipping since Blue Gene/P nodes have no local storage.
At boot, operating system images get broadcasted directly
into a node’s memory with I/O nodes receiving a lightweight
version of Linux that mounts remote file systems over a 10
Gigabit Ethernet link to a site’s storage infrastructure. All Blue
Gene/P nodes have three bidirectional 850MBps connections
to a collective network designed for one-to-all high-bandwidth
communications. When a compute node performs an I/O
function, the operation is shipped to the I/O node via a
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collective network link, then processed on the I/O node, and
the result returned to the compute node.

While metadata operations are easily reduced and elimi-
nated with Walla on the Blue Gene, developers need to watch
for calls that would remain local under Linux, but will be
shipped on the Blue Gene such as read, seek, and close
operations despite being pointed at a local memory buffer. This
leads to the need to eliminate or replace read and write calls
in code loading libraries and importing modules with code
that directly maps or executes the contents of the broadcasted
buffers. Eliminating any trace of function shipping has been a
major focus of reworking the CPython importer on the Blue
Gene/P platform.

Conclusions and Future Directions

We have described and demonstrated an example of using
Python as the means to bind and extend the well-established
hyperbolic PDE code Clawpack. The serial and parallel per-
formance of the resulting codes are remarkable given the
relatively small amount of coding (300 lines) required to turn
a serial Fortran code into a scalable parallel one. This is much
preferable to the alternative, more traditional approach of ex-
tending legacy codes directly for high-performance computing
applications using hand-coded APIs, which would be more
time-consuming and more difficult to maintain.

One of the drawbacks to the approach proposed is the
contention that can be caused by dynamic loading stresses on
many high-performance systems. The approach introduced by
Walla is a promising answer to this problem and preliminary
results suggest that it may be a solution for Python codes
suffering from poor scalability on distributed systems.
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