
34 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Hyperopt-Sklearn: Automatic Hyperparameter
Configuration for Scikit-Learn

Brent Komer∗†, James Bergstra†, Chris Eliasmith†

F

Abstract—Hyperopt-sklearn is a new software project that provides automatic
algorithm configuration of the Scikit-learn machine learning library. Following
Auto-Weka, we take the view that the choice of classifier and even the choice of
preprocessing module can be taken together to represent a single large hyper-
parameter optimization problem. We use Hyperopt to define a search space that
encompasses many standard components (e.g. SVM, RF, KNN, PCA, TFIDF)
and common patterns of composing them together. We demonstrate, using
search algorithms in Hyperopt and standard benchmarking data sets (MNIST,
20-Newsgroups, Convex Shapes), that searching this space is practical and
effective. In particular, we improve on best-known scores for the model space
for both MNIST and Convex Shapes.

Index Terms—bayesian optimization, model selection, hyperparameter opti-
mization, scikit-learn

Introduction

The size of data sets and the speed of computers have
increased to the point where it is often easier to fit complex
functions to data using statistical estimation techniques than
it is to design them by hand. The fitting of such functions
(training machine learning algorithms) remains a relatively
arcane art, typically mastered in the course of a graduate
degree and years of experience. Recently however, techniques
for automatic algorithm configuration based on Regression
Trees [Hut11], Gaussian Processes [Moc78], [Sno12], and
density-estimation techniques [Ber11] have emerged as viable
alternatives to hand-tuning by domain specialists.

Hyperparameter optimization of machine learning systems
was first applied to neural networks, where the number of
parameters can be overwhelming. For example, [Ber11] tuned
Deep Belief Networks (DBNs) with up to 32 hyperparameters,
and [Ber13a] showed that similar methods could search a
238-dimensional configuration space describing multi-layer
convolutional networks (convnets) for image classification.

Relative to DBNs and convnets, algorithms such as Support
Vector Machines (SVMs) and Random Forests (RFs) have a
small-enough number of hyperparameters that manual tuning
and grid or random search provides satisfactory results. Taking
a step back though, there is often no particular reason to use

* Corresponding author: bjkomer@uwaterloo.ca
† Centre for Theoretical Neuroscience, University of Waterloo

Copyright c○ 2014 Brent Komer et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

either an SVM or an RF when they are both computationally
viable. A model-agnostic practitioner may simply prefer to go
with the one that provides greater accuracy. In this light, the
choice of classifier can be seen as hyperparameter alongside
the C-value in the SVM and the max-tree-depth of the RF.
Indeed the choice and configuration of preprocessing compo-
nents may likewise be seen as part of the model selection /
hyperparameter optimization problem.

The Auto-Weka project [Tho13] was the first to show
that an entire library of machine learning approaches (Weka
[Hal09]) can be searched within the scope of a single run of
hyperparameter tuning. However, Weka is a GPL-licensed Java
library, and was not written with scalability in mind, so we
feel there is a need for alternatives to Auto-Weka. Scikit-learn
[Ped11] is another library of machine learning algorithms.
Is written in Python (with many modules in C for greater
speed), and is BSD-licensed. Scikit-learn is widely used in
the scientific Python community and supports many machine
learning application areas.

With this paper we introduce Hyperopt-Sklearn: a project
that brings the benefits of automatic algorithm configuration
to users of Python and scikit-learn. Hyperopt-Sklearn uses
Hyperopt [Ber13b] to describe a search space over possible
configurations of Scikit-Learn components, including prepro-
cessing and classification modules. Section 2 describes our
configuration space of 6 classifiers and 5 preprocessing mod-
ules that encompasses a strong set of classification systems for
dense and sparse feature classification (of images and text).
Section 3 presents experimental evidence that search over this
space is viable, meaningful, and effective. Section 4 presents
a discussion of the results, and directions for future work.

Background: Hyperopt for Optimization

The Hyperopt library [Ber13b] offers optimization algorithms
for search spaces that arise in algorithm configuration. These
spaces are characterized by a variety of types of variables
(continuous, ordinal, categorical), different sensitivity profiles
(e.g. uniform vs. log scaling), and conditional structure (when
there is a choice between two classifiers, the parameters of one
classifier are irrelevant when the other classifier is chosen). To
use Hyperopt, a user must define/choose three things:

1. a search domain,
2. an objective function,

mailto:bjkomer@uwaterloo.ca

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 35

3. an optimization algorithm.
The search domain is specified via random variables, whose

distributions should be chosen so that the most promising
combinations have high prior probability. The search domain
can include Python operators and functions that combine
random variables into more convenient data structures for
the objective function. The objective function maps a joint
sampling of these random variables to a scalar-valued score
that the optimization algorithm will try to minimize. Having
chosen a search domain, an objective function, and an opti-
mization algorithm, Hyperopt’s fmin function carries out the
optimization, and stores results of the search to a database
(e.g. either a simple Python list or a MongoDB instance). The
fmin call carries out the simple analysis of finding the best-
performing configuration, and returns that to the caller. The
fmin call can use multiple workers when using the MongoDB
backend, to implement parallel model selection on a compute
cluster.

Scikit-Learn Model Selection as a Search Problem

Model selection is the process of estimating which machine
learning model performs best from among a possibly infinite
set of possibilities. As an optimization problem, the search
domain is the set of valid assignments to the configuration
parameters (hyperparameters) of the machine learning model,
and the objective function is typically cross-validation, the
negative degree of success on held-out examples. Practitioners
usually address this optimization by hand, by grid search, or
by random search. In this paper we discuss solving it with the
Hyperopt optimization library. The basic approach is to set
up a search space with random variable hyperparameters, use
scikit-learn to implement the objective function that performs
model training and model validation, and use Hyperopt to
optimize the hyperparamters.

Scikit-learn includes many algorithms for classification
(classifiers), as well as many algorithms for preprocessing
data into the vectors expected by classification algorithms.
Classifiers include for example, K-Neighbors, SVM, and
RF algorithms. Preprocessing algorithms include things like
component-wise Z-scaling (Normalizer) and Principle Com-
ponents Analysis (PCA). A full classification algorithm typ-
ically includes a series of preprocessing steps followed by a
classifier. For this reason, scikit-learn provides a pipeline data
structure to represent and use a sequence of preprocessing
steps and a classifier as if they were just one component (typi-
cally with an API similar to the classifier). Although hyperopt-
sklearn does not formally use scikit-learn’s pipeline object,
it provides related functionality. Hyperopt-sklearn provides a
parameterization of a search space over pipelines, that is, of
sequences of preprocessing steps and classifiers.

The configuration space we provide includes six pre-
processing algorithms and seven classification algorithms.
The full search space is illustrated in Figure 1. The
preprocessing algorithms were (by class name, followed
by n. hyperparameters + n. unused hyperparameters):
PCA(2), StandardScaler(2), MinMaxScaler(1),
Normalizer(1), None, and TF-IDF(0+9). The first

four preprocessing algorithms were for dense features. PCA
performed whitening or non-whitening principle compo-
nents analysis. The StandardScaler, MinMaxScaler,
and Normalizer did various feature-wise affine trans-
forms to map numeric input features onto values near
0 and with roughly unit variance. The TF-IDF pre-
processing module performed feature extraction from text
data. The classification algorithms were (by class name
(used + unused hyperparameters)): SVC(23), KNN(4+5),
RandomForest(8) , ExtraTrees(8) , SGD(8+4) ,
and MultinomialNB(2) . The SVC module is a fork of
LibSVM, and our wrapper has 23 hyperparameters because
we treated each possible kernel as a different classifier, with
its own set of hyperparameters: Linear(4), RBF(5), Polyno-
mial(7), and Sigmoid(6). In total, our parameterization has 65
hyperparameters: 6 for preprocessing and 53 for classification.
The search space includes 15 boolean variables, 14 categorical,
17 discrete, and 19 real-valued variables.

Although the total number of hyperparameters is large,
the number of active hyperparameters describing any one
model is much smaller: a model consisting of PCA and a
RandomForest for example, would have only 12 active
hyperparameters (1 for the choice of preprocessing, 2 internal
to PCA, 1 for the choice of classifier and 8 internal to the
RF). Hyperopt description language allows us to differentiate
between conditional hyperparameters (which must always be
assigned) and non-conditional hyperparameters (which may
remain unassigned when they would be unused). We make
use of this mechanism extensively so that Hyperopt’s search
algorithms do not waste time learning by trial and error
that e.g. RF hyperparameters have no effect on SVM perfor-
mance. Even internally within classifiers, there are instances
of conditional parameters: KNN has conditional parameters
depending on the distance metric, and LinearSVC has 3
binary parameters (loss , penalty , and dual) that
admit only 4 valid joint assignments. We also included a
blacklist of (preprocessing, classifier) pairs that did not work
together, e.g. PCA and MinMaxScaler were incompatible with
MultinomialNB, TF-IDF could only be used for text data, and
the tree-based classifiers were not compatible with the sparse
features produced by the TF-IDF preprocessor. Allowing for
a 10-way discretization of real-valued hyperparameters, and
taking these conditional hyperparameters into account, a grid
search of our search space would still require an infeasible
number of evalutions (on the order of 1012).

Finally, the search space becomes an optimization prob-
lem when we also define a scalar-valued search objective.
Hyperopt-sklearn uses scikit-learn’s score method on valida-
tion data to define the search criterion. For classifiers, this is
the so-called "Zero-One Loss": the number of correct label
predictions among data that has been withheld from the data
set used for training (and also from the data used for testing
after the model selection search process).

Example Usage

Following Scikit-learn’s convention, hyperopt-sklearn provides
an Estimator class with a fit method and a predict

36 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 1: Hyeropt-sklearn’s full search space (“Any Classifier”) consists of a (preprocessing, classsifier) pair. There are 6 possible preprocessing
modules and 6 possible classifiers. Choosing a model within this configuration space means choosing paths in an ancestral sampling process.
The highlighted green edges and nodes represent a (PCA, K-Nearest Neighbor) model. The number of active hyperparameters in a model
is the sum of parenthetical numbers in the selected boxes. For the PCA+KNN combination, 7 hyperparameters are activated.

method. The fit method of this class performs hyperparam-
eter optimization, and after it has completed, the predict
method applies the best model to test data. Each evaluation
during optimization performs training on a large fraction of
the training set, estimates test set accuracy on a validation set,
and returns that validation set score to the optimizer. At the end
of search, the best configuration is retrained on the whole data
set to produce the classifier that handles subsequent predict
calls.

One of the important goals of hyperopt-sklearn is that it is
easy to learn and to use. To facilitate this, the syntax for fitting
a classifier to data and making predictions is very similar
to scikit-learn. Here is the simplest example of using this
software.
from hpsklearn import HyperoptEstimator
Load data ({train,test}_{data,label})
Create the estimator object
estim = HyperoptEstimator()
Search the space of classifiers and preprocessing
steps and their respective hyperparameters in
scikit-learn to fit a model to the data
estim.fit(train_data, train_label)
Make a prediction using the optimized model
prediction = estim.predict(unknown_data)
Report the accuracy of the classifier
on a given set of data
score = estim.score(test_data, test_label)
Return instances of the classifier and
preprocessing steps
model = estim.best_model()

The HyperoptEstimator object contains the information
of what space to search as well as how to search it. It
can be configured to use a variety of hyperparameter search
algorithms and also supports using a combination of algo-
rithms. Any algorithm that supports the same interface as the
algorithms in hyperopt can be used here. This is also where
you, the user, can specify the maximum number of function
evaluations you would like to be run as well as a timeout (in
seconds) for each run.
from hpsklearn import HyperoptEstimator

from hyperopt import tpe
estim = HyperoptEstimator(algo=tpe.suggest,

max_evals=150,
trial_timeout=60)

Each search algorithm can bring its own bias to the search
space, and it may not be clear that one particular strategy is
the best in all cases. Sometimes it can be helpful to use a
mixture of search algorithms.
from hpsklearn import HyperoptEstimator
from hyperopt import anneal, rand, tpe, mix
define an algorithm that searches randomly 5% of
the time, uses TPE 75% of the time, and uses
annealing 20% of the time
mix_algo = partial(mix.suggest, p_suggest=[

(0.05, rand.suggest),
(0.75, tpe.suggest),
(0.20, anneal.suggest)])

estim = HyperoptEstimator(algo=mix_algo,
max_evals=150,
trial_timeout=60)

Searching effectively over the entire space of classifiers avail-
able in scikit-learn can use a lot of time and computational
resources. Sometimes you might have a particular subspace of
models that they are more interested in. With hyperopt-sklearn
it is possible to specify a more narrow search space to allow
it to be be explored in greater depth.
from hpsklearn import HyperoptEstimator, svc
limit the search to only models a SVC
estim = HyperoptEstimator(classifier=svc(’my_svc’))

Combinations of different spaces can also be used.
from hpsklearn import HyperoptEstimator, svc, knn, \
from hyperopt import hp
restrict the space to contain only random forest,
k-nearest neighbors, and SVC models.
clf = hp.choice(’my_name’,

[random_forest(’my_name.random_forest’),
svc(’my_name.svc’),
knn(’my_name.knn’)])

estim = HyperoptEstimator(classifier=clf)

The support vector machine provided by scikit-learn has a
number of different kernels that can be used (linear, rbf, poly,

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 37

sigmoid). Changing the kernel can have a large effect on the
performance of the model, and each kernel has its own unique
hyperparameters. To account for this, hyperopt-sklearn treats
each kernel choice as a unique model in the search space. If
you already know which kernel works best for your data, or
you are just interested in exploring models with a particular
kernel, you may specify it directly rather than going through
the svc.
from hpsklearn import HyperoptEstimator, svc_rbf
estim = HyperoptEstimator(

classifier=svc_rbf(’my_svc’))

It is also possible to specify which kernels you are interested
in by passing a list to the svc.
from hpsklearn import HyperoptEstimator, svc
estim = HyperoptEstimator(

classifier=svc(’my_svc’,
kernels=[’linear’,

’sigmoid’]))

In a similar manner to classifiers, the space of preprocessing
modules can be fine tuned. Multiple successive stages of
preprocessing can be specified by putting them in a list. An
empty list means that no preprocessing will be done on the
data.
from hpsklearn import HyperoptEstimator, pca
estim = HyperoptEstimator(

preprocessing=[pca(’my_pca’)])

Combinations of different spaces can be used here as well.
from hpsklearn import HyperoptEstimator, tfidf, pca
from hyperopt import hp
preproc = hp.choice(’my_name’,

[[pca(’my_name.pca’)],
[pca(’my_name.pca’), normalizer(’my_name.norm’)]
[standard_scaler(’my_name.std_scaler’)],
[]])

estim = HyperoptEstimator(preprocessing=preproc)

Some types of preprocessing will only work on specific types
of data. For example, the TfidfVectorizer that scikit-learn
provides is designed to work with text data and would not be
appropriate for other types of data. To address this, hyperopt-
sklearn comes with a few pre-defined spaces of classifiers and
preprocessing tailored to specific data types.
from hpsklearn import HyperoptEstimator, \

any_sparse_classifier, \
any_text_preprocessing

from hyperopt import tpe
estim = HyperoptEstimator(

algo=tpe.suggest,
classifier=any_sparse_classifier(’my_clf’)
preprocessing=any_text_preprocessing(’my_pp’)
max_evals=200,
trial_timeout=60)

So far in all of these examples, every hyperparameter available
to the model is being searched over. It is also possible for
you to specify the values of specific hyperparameters, and
those parameters will remain constant during the search. This
could be useful, for example, if you knew you wanted to use
whitened PCA data and a degree-3 polynomial kernel SVM.
from hpsklearn import HyperoptEstimator, pca, svc_poly
estim = HyperoptEstimator(

preprocessing=[pca(’my_pca’, whiten=True)],
classifier=svc_poly(’my_poly’, degree=3))

It is also possible to specify ranges of individual parameters.
This is done using the standard hyperopt syntax. These will
override the defaults defined within hyperopt-sklearn.
from hpsklearn import HyperoptEstimator, pca, sgd
from hyperopt import hp
import numpy as np
sgd_loss = hp.pchoice(’loss’,

[(0.50, ’hinge’),
(0.25, ’log’),
(0.25, ’huber’)])

sgd_penalty = hp.choice(’penalty’,
[’l2’, ’elasticnet’])

sgd_alpha = hp.loguniform(’alpha’,
low=np.log(1e-5),
high=np.log(1))

estim = HyperoptEstimator(
classifier=sgd(’my_sgd’,

loss=sgd_loss,
penalty=sgd_penalty,
alpha=sgd_alpha))

All of the components available to the user can be found in
the components.py file. A complete working example of
using hyperopt-sklearn to find a model for the 20 newsgroups
data set is shown below.
from hpsklearn import HyperoptEstimator, tfidf, \

any_sparse_classifier
from sklearn.datasets import fetch_20newsgroups
from hyperopt import tpe
import numpy as np
Download data and split training and test sets
train = fetch_20newsgroups(subset=’train’)
test = fetch_20newsgroups(subset=’test’)
X_train = train.data
y_train = train.target
X_test = test.data
y_test = test.target
estim = HyperoptEstimator(

classifier=any_sparse_classifier(’clf’),
preprocessing=[tfidf(’tfidf’)],
algo=tpe.suggest,
trial_timeout=180)

estim.fit(X_train, y_train)
print(estim.score(X_test, y_test))
print(estim.best_model())

Experiments

We conducted experiments on three data sets to establish that
hyperopt-sklearn can find accurate models on a range of data
sets in a reasonable amount of time. Results were collected on
three data sets: MNIST, 20-Newsgroups, and Convex Shapes.
MNIST is a well-known data set of 70K 28x28 greyscale
images of hand-drawn digits [Lec98]. 20-Newsgroups is a
20-way classification data set of 20K newsgroup messages (
[Mit96] , we did not remove the headers for our experiments).
Convex Shapes is a binary classification task of distinguishing
pictures of convex white-colored regions in small (32x32)
black-and-white images [Lar07].

Figure 2 shows that there was no penalty for searching
broadly. We performed optimization runs of up to 300 function
evaluations searching the entire space, and compared the qual-
ity of solution with specialized searches of specific classifier
types (including best known classifiers).

Figure 3 shows that search could find different, good
models. This figure was constructed by running hyperopt-
sklearn with different initial conditions (number of evaluations,

38 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Fig. 2: For each data set, searching the full configuration space
(“Any Classifier”) delivered performance approximately on par with
a search that was restricted to the best classifier type. (Best viewed
in color.)

Fig. 3: Looking at the best models from all optimization runs
performed on the full search space (using different initial conditions,
and different optimization algorithms) we see that different data sets
are handled best by different classifiers. SVC was the only classifier
ever chosen as the best model for Convex Shapes, and was often
found to be best on MNIST and 20 Newsgroups, however the best
SVC parameters were very different across data sets.

choice of optimization algorithm, and random number seed)
and keeping track of what final model was chosen after each
run. Although support vector machines were always among
the best, the parameters of best SVMs looked very different
across data sets. For example, on the image data sets (MNIST
and Convex) the SVMs chosen never had a sigmoid or linear
kernel, while on 20 newsgroups the linear and sigmoid kernel
were often best.

Fig. 4: Using Hyperopt’s Anneal search algorithm, increasing the
number of function evaluations from 150 to 2400 lead to a modest
improvement in accuracy on 20 Newsgroups and MNIST, and a more
dramatic improvement on Convex Shapes. We capped evaluations to
5 minutes each so 300 evaluations took between 12 and 24 hours of
wall time.

Fig. 5: Right: TPE makes gradual progress on 20 Newsgroups over
300 iterations and gives no indication of convergence.

Discussion and Future Work

Table 1 lists the test set scores of the best models found
by cross-validation, as well as some points of reference
from previous work. Hyperopt-sklearn’s scores are relatively
good on each data set, indicating that with hyperopt-sklearn’s
parameterization, Hyperopt’s optimization algorithms are com-
petitive with human experts.

The model with the best performance on the MNIST Digits
data set uses deep artificial neural networks. Small receptive
fields of convolutional winner-take-all neurons build up the
large network. Each neural column becomes an expert on
inputs preprocessed in different ways, and the average pre-
diction of 35 deep neural columns to come up with a single
final prediction [Cir12]. This model is much more advanced
than those available in scikit-learn. The previously best known
model in the scikit-learn search space is a radial-basis SVM on
centered data that scores 98.6%, and hyperopt-sklearn matches
that performance [MNIST].

The CFC model that performed quite well on the 20 news-
groups document classification data set is a Class-Feature-
Centroid classifier. Centroid approaches are typically inferior
to an SVM, due to the centroids found during training being
far from the optimal location. The CFC method reported here
uses a centroid built from the inter-class term index and the
inner-class term index. It uses a novel combination of these
indices along with a denormalized cosine measure to calculate
the similarity score between the centroid and a text vector
[Gua09]. This style of model is not currently implemented in
hyperopt-sklearn, and our experiments suggest that existing
hyperopt-sklearn components cannot be assembled to match
its level of performance. Perhaps when it is implemented,
Hyperopt may find a set of parameters that provides even
greater classification accuracy.

On the Convex Shapes data set, our Hyperopt-sklearn ex-
periments revealed a more accurate model than was previously
believed to exist in any search space, let alone a search
space of such standard components. This result underscores

HYPEROPT-SKLEARN: AUTOMATIC HYPERPARAMETER CONFIGURATION FOR SCIKIT-LEARN 39

MNIST 20 Newsgroups Convex Shapes
Approach Accuracy Approach F-Score Approach Accuracy
Committee of
convnets

99.8% CFC 0.928 hyperopt-
sklearn

88.7%

hyperopt-
sklearn

98.7% hyperopt-
sklearn

0.856 hp-dbnet 84.6%

libSVM grid
search

98.6% SVMTorch 0.848 dbn-3 81.4%

Boosted trees 98.5% LibSVM 0.843

TABLE 1: Hyperopt-sklearn scores relative to selections from literature on the three data sets used in our experiments. On MNIST, hyperopt-
sklearn is one of the best-scoring methods that does not use image-specific domain knowledge (these scores and others may be found at
http://yann.lecun.com/exdb/mnist/). On 20 Newsgroups, hyperopt-sklearn is competitive with similar approaches from the literature (scores
taken from [Gua09]). In the 20 Newsgroups data set, the score reported for hyperopt-sklearn is the weighted-average F1 score provided
by sklearn. The other approaches shown here use the macro-average F1 score. On Convex Shapes, hyperopt-sklearn outperforms previous
automatic algorithm configuration approaches [Egg13] and manual tuning [Lar07] .

the difficulty and importance of hyperparameter search.
Hyperopt-sklearn provides many opportunities for future

work: more classifiers and preprocessing modules could be
included in the search space, and there are more ways to
combine even the existing components. Other types of data
require different preprocessing, and other prediction problems
exist beyond classification. In expanding the search space,
care must be taken to ensure that the benefits of new models
outweigh the greater difficulty of searching a larger space.
There are some parameters that scikit-learn exposes that are
more implementation details than actual hyperparameters that
affect the fit (such as algorithm and leaf_size in
the KNN model). Care should be taken to identify these
parameters in each model and they may need to be treated
differently during exploration.

It is possible for a user to add their own classifier to
the search space as long as it fits the scikit-learn interface.
This currently requires some understanding of how hyperopt-
sklearn’s code is structured and it would be nice to improve
the support for this so minimal effort is required by the user.
We also plan to allow the user to specify alternate scoring
methods besides just accuracy and F-measure, as there can be
cases where these are not best suited to the particular problem.

We have shown here that Hyperopt’s random search, anneal-
ing search, and TPE algorithms make Hyperopt-sklearn viable,
but the slow convergence in e.g. Figure 4 and 5 suggests that
other optimization algorithms might be more call-efficient.
The development of Bayesian optimization algorithms is an
active research area, and we look forward to looking at how
other search algorithms interact with hyperopt-sklearn’s search
spaces. Hyperparameter optimization opens up a new art of
matching the parameterization of search spaces to the strengths
of search algorithms.

Computational wall time spent on search is of great practical
importance, and hyperopt-sklearn currently spends a signifi-
cant amount of time evaluating points that are un-promising.
Techniques for recognizing bad performers early could speed
up search enormously [Swe14], [Dom14]. Relatedly, hyperopt-
sklearn currently lacks support for K-fold cross-validation. In
that setting, it will be crucial to follow SMAC in the use of
racing algorithms to skip un-necessary folds.

Conclusions

We have introduced Hyperopt-sklearn, a Python package for
automatic algorithm configuration of standard machine learn-
ing algorithms provided by Scikit-Learn. Hyperopt-sklearn
provides a unified view of 6 possible preprocessing modules
and 6 possible classifiers, yet with the help of Hyperopt’s
optimization functions it is able to both rival and surpass
human experts in algorithm configuration. We hope that it
provides practitioners with a useful tool for the development
of machine learning systems, and automatic machine learning
researchers with benchmarks for future work in algorithm
configuration.

Acknowledgements

This research was supported by the NSERC Banting Fellow-
ship program, the NSERC Engage Program and by D-Wave
Systems. Thanks also to Hristijan Bogoevski for early drafts
of a hyperopt-to-scikit-learn bridge.

REFERENCES

[Ber11] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kegl. Algorithms for
hyper-parameter optimization, NIPS, 24:2546–2554, 2011.

[Ber13a] J. Bergstra, D. Yamins, and D. D. Cox. Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for
vision architectures, In Proc. ICML, 2013a.

[Ber13b] J. Bergstra, D. Yamins, and D. D. Cox. Hyperopt: A Python library
for optimizing the hyperparameters of machine learning algorithms,
SciPy’13, 2013b.

[Cir12] D. Ciresan, U. Meier, and J. Schmidhuber. Multi-column Deep
Neural Networks for Image Classification, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 3642-3649.
2012.

[Dom14] T. Domhan, T. Springenberg, F. Hutter. Extrapolating Learning
Curves of Deep Neural Networks, ICML AutoML Workshop, 2014.

[Egg13] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H.
Hoos, and K. Leyton-Brown. Towards an empirical foundation for
assessing bayesian optimization of hyperparameters, NIPS work-
shop on Bayesian Optimization in Theory and Practice, 2013.

[Gua09] H. Guan, J. Zhou, and M. Guo. A class-feature-centroid classifier
for text categorization, Proceedings of the 18th international con-
ference on World wide web, 201-210. ACM, 2009.

[Hal09] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten. The weka data mining software: an update, ACM
SIGKDD explorations newsletter, 11(1):10-18, 2009.

[Hut11] F. Hutter, H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration, LION-5, 2011.
Extended version as UBC Tech report TR-2010-10.

http://yann.lecun.com/exdb/mnist/

40 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

[Lar07] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio.
An empirical evaluation of deep architectures on problems with
many factors of variation, ICML, 473-480, 2007.

[Lec98] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based
learning applied to document recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998.

[Mit96] T. Mitchell. 20 newsgroups data set, http://qwone.com/jason/
20Newsgroups/, 1996.

[Moc78] J. Mockus, V. Tiesis, and A. Zilinskas. The application of Bayesian
methods for seeking the extremum, L.C.W. Dixon and G.P. Szego,
editors, Towards Global Optimization, volume 2, pages 117–129.
North Holland, New York, 1978.

[MNIST] The MNIST Database of handwritten digits: http://yann.lecun.com/
exdb/mnist/

[Ped11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine Learning in Python, Journal
of Machine Learning Research, 12:2825–2830, 2011.

[Sno12] J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian
optimization of machine learning algorithms, Neural Information
Processing Systems, 2012.

[Swe14] K. Swersky, J. Snoek, R.P. Adams. Freeze-Thaw Bayesian Opti-
mization, arXiv:1406.3896, 2014.

[Tho13] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-
WEKA: Automated selection and hyper-parameter optimization of
classification algorithms, KDD 847-855, 2013.

http://qwone.com/jason/20Newsgroups/
http://qwone.com/jason/20Newsgroups/
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Background: Hyperopt for Optimization
	Scikit-Learn Model Selection as a Search Problem
	Example Usage
	Experiments
	Discussion and Future Work
	Conclusions
	Acknowledgements
	References

