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TracPy: Wrapping the Fortran Lagrangian trajectory
model TRACMASS
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Abstract—Numerical Lagrangian trajectory modeling is a natural method of
investigating transport in a circulation system and understanding the physics
on the wide range of length scales that are actually experienced by a drifter.
A previously-developed tool, TRACMASS, written in Fortran, accomplishes this
modeling with a clever algorithm that operates natively on the commonly used
staggered Arakawa C grid. TracPy is a Python wrapper written to ease running
batches of simulations. Some improvements in TracPy include updating to
netCDF4-CLASSIC from netCDF3 for saving drifter trajectories, providing an
iPython notebook as a usermanual for using the system, and adding unit tests
for stable continued development.

Index Terms—Lagrangian tracking, numerical drifters, Python wrapper

Introduction

Drifters are used in oceanography and atmospherics in situ
in order to demonstrate flow patterns created by individual
fluid parcels. For example, in the ocean, drifters will often
be released on the sea surface, and allowed to be passively
transported with the flow, reporting their location via GPS at
regular intervals. In this way, drifters are gathering data in a
Lagrangian perspective. For example, [LaCasce2003] analyzes
a set of over 700 surface drifters released in the northern Gulf
of Mexico, using the tracks to better understand the dynamics
of the underlying circulation fields.

Lagrangian trajectory modeling is a method of moving
parcels through a fluid based on numerically modeled circula-
tion fields. This approach enables analysis of many different
drifter experiments for a much lower cost than is required to
gather one relatively small set of drifters. Additionally, the
inherent limits to the number of drifters that can reasonably
be used in situ can lead to biased statistics [LaCasce2008].
In one study, numerical drifters were used to understand
where radio-nuclides from a storage facility would travel
if accidentally released [Döös2007]. Drifters are also used
in on-going response work by the Office of Response and
Restoration in the National Oceanic and Atmospheric Admin-
istration (NOAA). Using model output made available by var-
ious groups, responders apply their tool (General NOAA Oil
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Modeling Environment, GNOME) to simulate drifters and get
best estimates of predicted oil transport [Beegle-Krause1999],
[Beegle-Krause2001].

Numerical drifters may be calculated online, while a circu-
lation model is running, in order to use the highest resolution
model-predicted velocity fields available in time (on the order
of seconds to minutes). However, due to the high costs of the
hydrodynamic computation, many repeated online simulations
is not usually practical. In this case, Lagrangian trajectories
can also be calculated offline, using the velocity fields at the
stored temporal resolution (on the order of minutes to hours).

There are many sources of error in simulating offline La-
grangian trajectories. For example, the underlying circulation
model must be capturing the dynamics to be investigated, and
model output must be available often enough to represent
the simulated flow conditions accurately. On top of that,
the Lagrangian trajectory model must properly reproduce the
transport pathways of the system. A given drifter’s trajectory
is calculated using velocity fields with a spatial resolution
determined by the numerical model grid. To move the drifter,
the velocity fields must be available at the drifter’s location,
which in general will not be co-located with all necessary
velocity information. Many Lagrangian trajectory models use
low- or high-order interpolation in space to extend the velocity
information to the drifter location. The algorithm discussed in
this work has a somewhat different approach.

TRACMASS is a Lagrangian trajectory model that runs
natively on velocity fields that have been calculated on a
staggered Arakawa C grid. Originally written about 2 decades
ago, it has been used in many applications (e.g., [Döös2007]).
The core algorithm for TRACMASS is written in Fortran for
speed, and has been wrapped in Python for increased usability.
This code package together is called TracPy [Thyng2014b].

TRACMASS

The TRACMASS algorithm for stepping numerical drifters in
space is distinct from many algorithms because it runs natively
on a staggered Arakawa C grid, i.e., it uses the velocity fields
at the grid locations at which they are calculated. This grid
is used in ocean modeling codes, including ROMS, MITgcm,
and HyCOM. In the staggered Arakawa C grid, the west-east
or zonal velocity, u, is located at the west and east walls of a
grid cell; the north-south or meridional velocity, v, is located
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Fig. 1: A single rectangular grid cell is shown in the x-y plane.
Zonal (meridional) u (v) velocities are calculated at the east/west
(north/south) cell walls. In the vertical direction, w velocities are
calculated at the top and bottom cell walls. After [Döös2013].

at the north and south walls; and the vertical velocity, w, is
located at the vertically top and bottom cell walls (Figure 1).
Note that the algorithm is calculated using fluxes through grid
cell walls instead of the velocities themselves to account for
differences in cell wall size due to a curvilinear horizontal
grid or a σ coordinate vertical grid. The drifter is stepped as
follows:

1. To calculate the time required for the drifter to exit
the grid cell in the x direction:
a. Linearly interpolate the velocity across the cell

in the zonal direction to find u(x).
b. Solve the ordinary differential equation

u(x) = dx
dt for x(t).

c. Back out the time required to exit the grid cell
in the zonal direction, tx.

2. Follow the same methodology in the meridional
and vertical directions to find ty and tz.

3. The minimum time tmin; the minimum of tx, ty, tz;
is when the drifter would first exit the grid cell

4. The subsequent (x,y,z) position for the drifter is
calculated using tmin.

This process occurs for each drifter each time it is moved
forward from one grid cell edge to the next. If a drifter will not
reach a grid cell edge, it stops in the grid cell. Calculations
for the drifter trajectories are done in grid index space so
that the grid is rectangular, which introduces a number of
simplifications. The velocity fields are linearly interpolated
in time for each subsequent stepping of each drifter. Be-
cause a drifter is moved according to its distinct time and
location, each drifter is stepped separately, and the time step
between each reinterpolation can be different. The location

Fig. 2: A trajectory from a damped inertial oscillation is shown from
several simulated cases with the analytic solution. Cases shown are
trajectories calculated using TRACMASS with zero [red], 10 [blue],
and 1000 [green] time interpolation steps between model outputs; the
analytic solution [black]; and the time-dependent algorithm [purple].
The green, black, and purple curves are indistinguishable. From
[Döös2013].

of all drifters is sampled at regular intervals between the
available circulation model outputs for consistency. Because
reading in the circulation model output is one of the more
time-consuming parts of the process, all drifters are stepped
between the velocity fields at two consecutive times, then the
velocity fields from the next output time are read in to continue
stepping.

Drifters can be stepped forward or backward in time; this
is accomplished essentially by multiplying the velocity fields
by -1. Because of the analytic nature of the TRACMASS
algorithm, the trajectories found forward and backward in time
are the same.

Time is assumed to be steady while a drifter is being
stepped through a grid cell—how much this will affect the
resulting trajectory depends on the size of the grid cell relative
to the speed of the drifter. When a drifter reaches another
grid cell wall, the fields are re-interpolated. The user may
choose to interpolate the velocity fields at shorter intervals
if desired by setting a maximum time before reinterpolation.
A time-dependent algorithm has been developed to extend
the TRACMASS algorithm [DeVries2001], but previous re-
searchers have found that the steady approximation is adequate
in many cases [Döös2013] and it is not implemented in TracPy.

The capability of the TRACMASS algorithm has been
demonstrated by creating synthetic model output, running
numerical drifters, and comparing with known trajectory so-
lutions (Figure 2). A damped inertial oscillation is used in the
test, for which the analytic solutions for both the velocity fields
and a particle’s trajectory are known [Döös2013]. Cases of a
drifter trajectory calculated with different levels of interpola-
tion between model outputs are shown along with the analytic
solution and a trajectory calculated using the time-dependent
TRACMASS algorithm. All trajectories generally following
the analytic solution, but the case with no time interpolation of
the fields clearly deviates. The case with 10 interpolation steps
in times performs well, and with 1000 interpolation steps, the
curves are indistinguishable. Note that in this test case, the
size of the grid cell relative to the motion of the trajectory
emphasizes the effect of time interpolation.

Options are available to complement the basic algorithm of
TRACMASS. For example, it can be important to consider
whether or not to add additional explicit subgrid diffusion
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Fig. 3: Instead of being stepped forward to new location (x1,y1) by
the base velocity field, a drifter can be instead stepped forward by
the velocity field plus a random velocity fluctuation to include explicit
subgrid diffusion, such that the drifter ends up instead at (x1,y1)

′.
After [Döös2013].

to drifters. Energy at scales below a few spatial grid cells
is not included in an ocean circulation model except through
a turbulence closure scheme or other means. This energy is
included in the numerical scheme and implemented in the
simulation, and in this regard is implicitly included in the
saved velocity fields from the circulation model. From this per-
spective, adding any additional subgrid energy is duplicating
the energy that is already included in the simulation. However,
without including some small-scale energy to drifter tracks,
drifters starting at the same time and location will follow
the same path, which is clearly not realistic—adding a small
amount of energy to drifter tracks acts to stir drifters in a
way that often looks more realistic than when explicit subgrid
diffusion is not included. This added energy will also affect
Lagrangian metrics that are calculated from drifter trajectories
(e.g., [Döös2011]).

To address this issue, there are several optional means of in-
cluding explicit subgrid diffusion in TRACMASS, all of which
are low order schemes [LaCasce2008]. Drifter trajectories may
be stepped using not the basic velocity fields (u,v) but with
the velocity fields plus some small random velocity fluctuation
(u′, v′) (Figure 3). Alternatively, drifter trajectory locations
can be given an added random walk—randomly moved a
small distance away from their location each step within a
circle whose radius is controlled by an input parameter (Figure
4). Note that when using additional subgrid diffusion, drifter
tracks will not be the same forward and backward in time.

TracPy

The goal of TracPy is to take advantage of the speed and
ingenuity of the TRACMASS algorithm, written in Fortran,
but have access to the niceties of Python and for quickly and
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Fig. 4: A drifter’s location can be randomly pushed within a circle
from its calculated position to add explicit subgrid diffusion. After
[Döös2013].

simply setting up and running batches of simulations. Being
a scientific research code, TRACMASS has been developed
by different researchers and with specific research purposes
in mind, such that the complexity of the code grew over
time. TracPy was written to include the important basic,
computationally burdensome elements of calculating drifter
trajectories from TRACMASS, and do the rest in Python.

TracPy uses a class for a given simulation of drifters. The
TracPy class is initialized with all necessary parameters for the
simulation itself, e.g., number of days to run the simulation,
parameter for maximum time before reinterpolation between
available circulation model outputs, whether to use subgrid
diffusion, and whether to run in 2D or 3D. The class has
methods for reading in the numerical grid, preparing for the
simulation, preparing for each model step (e.g., reading in
the velocity fields at the next time step), stepping the drifters
forward between the two time steps of velocity fields stored
in memory, wrapping up the time step, and wrapping up
the simulation. Utilities are provided in TracPy for necessary
computations, such as moving between grid spaces of the
drifter locations. That is, drifter locations may, in general,
be given in geographic space (i.e., longitude/latitude) or in
projected space (e.g., universal traverse mercator or Lambert
conformal conic), and positions are converted between the
two using Python packages Basemap or Pyproj. Additionally,
drifter locations will need to be transformed between grid
index space, which is used in TRACMASS, and real space.
Plotting functions and common calculations are also included
in the suite of code making up TracPy.

Other improvements in the code system:

• Global variables have been removed in moving from the
original set of TRACMASS code to the leaner TRAC-
MASS algorithm that exists in TracPy, and have been
replaced with variables that are passed directly between
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functions as needed.
• A user manual has been implemented in an iPython

notebook.
• A few simple test cases have been provided for users

to experiment with and as a set of unit tests to improve
stability during code development.

The parallelization of an offline Lagrangian trajectory model
could be relatively straight-forward. Each drifter trajectory in
any given simulation is independent of every other drifter.
However, one of the slowest parts of drifter tracking is often
reading in the velocity fields—separating out drifter trajectory
calculations into different processes would most likely increase
the input/output requirement. Still, an easy way to take advan-
tage of the drifter calculations being inherently decoupled is to
run different simulations on different processes. Many times,
drifter simulations are run in large sets to gather meaningful
statistics, in which case these separate simulations can all be
distributed to different processes—as opposed to subdividing
individual simulations to calculate different trajectories on
different processes.

Drifter tracks are saved in netCDF files. The file format
was recently changed from netCDF3 to netCDF4-CLASSIC.
This change was made because netCDF4-CLASSIC combines
many of the good parts of netCDF3 (e.g., file aggregation
along a dimension) with some of the abilities of netCDF4
(compression). It does not allow for multiple unlimited di-
mensions (available in netCDF4), but that capability has not
been necessary in this application. Changing to netCDF4-
CLASSIC sped up the saving process, which had been slow
with netCDF3 when a large number of drifters was used.
The 64 bit format is used for saving the tracks for lossless
compression of information.

We ran a two-dimensional test with about 270,000 surface
drifters and over 100,000 grid cells for 30 days. A NaN is
stored once a drifter exits the domain and forever after in
time for that drifter (i.e., drifters do not reenter the numerical
domain). This results in a large amount of output (much of
which may contain NaNs), and saving such a large file can
be really slow using netCDF3. Run time and space require-
ment results comparing simulations run with netCDF3 and
netCDF4-CLASSIC show improved results with netCDF4-
CLASSIC (Table 1). The simulation run time does not include
time for saving the tracks, which is listed separately. The
simulation run time was the same regardless of the file
format used (since it only comes in when saving the file
afterward), but the file save time was massively reduced by
using netCDF4-CLASSIC (about 96%). Additionally, the file
size was reduced by about 42%. Note that the file size is the
same between netCDF4 and netCDF4-CLASSIC (not shown).

Suites of simulations were run using TracPy to test its time
performance on both a Linux workstation (Figure 5) and a
Macintosh laptop (not shown, but similar results). Changing
the number of grid cells in a simulation (keeping the number of
drifters constant at a moderate value) most affects the amount
of time required to prepare the simulation, which is when
the grid is read in. The grid will not be changing size in
typical use cases so it may not be a significant problem, but
the rapid increase in time required to run the code with an

netCDF3 netCDF4C % decrease
Simulation run time [s] 1038 1038 0
File save time [s] 3527 131 96
File size [GB] 3.6 2.1 42

TABLE 1: Comparisons between simulations run with
netCDF3_64BIT and netCDF4-CLASSIC.

increasing number of grid cells may indicate an opportunity
for improvement in the way the simulations are prepared.
However, the time required to read in the grid increases
exponentially with number of grid cells due to the increase
in memory requirement for the grid arrays, so a change in
approach to what information is necessary to have on hand for
a simulation may be the only way to improve this. Changing
the number of drifters (keeping the number of grid cells
constant at a moderate value) affects the timing of several
parts of the simulation. The base time spent preparing the
simulation is mostly consistent since the grid size does not
change between the cases. The time for stepping the drifters
with TRACMASS, and processing after stepping drifters and
at the end of the simulation increase with an increasing number
of drifters, as would be expected. The time required for
increasing the number of drifters should scale linearly. Files
used to run these tests are available on GitHub.

The TracPy suite of code has been used to investigate
several research problems so far. In one study, we sought to
understand the effect of the temporal resolution of the circu-
lation model output on the resulting drifter tracks (Figure 6).
In another study, we initialized drifters uniformly throughout
a numerical domain of the northwestern Gulf of Mexico and
used the resulting tracks to examine the connectivity of water
across the shelf break and the connectivity of surrounding
waters with parts of the coastline (see e.g., Figure 7). Drifters
have also been initialized at the inputs of the Mississippi
and Atchafalaya rivers and tracked to illustrate the complex
pathways of the fresh water (Figure 8).

Many improvements and extensions could be made to
TracPy. It is intended to be integrated into NOAA’s GNOME
oil tracking system in order to contribute another mover
to their tracking system and take advantage of utilities in
GNOME that are not in the TRACMASS algorithm, such as
the ability to directly apply windage (this can be important
for modeling material that directly feels wind stress, such as
large oil slicks). Potential improvements include:
• The way the grid is read in and stored is taking too much

time, as was seen in the TracPy performance tests.
• Placeholders for all locations for all drifters are currently

stored for the entirety of a simulation run, which inflates
the memory required for a simulation. Instead, drifter
locations could be only temporarily stored and appended
to the output file as calculated.

• A drifter location is set to NaN when the drifter exits the
domain. This is currently somewhat accounted for by us-
ing netCDF4-CLASSIC compression. However, another
way to minimize unnecessary NaN storage would be to
alter how drifter tracks are stored. Instead of the current

http://nbviewer.ipython.org/urls/raw.github.com/kthyng/tracpy/master/docs/manual.ipynb
https://github.com/kthyng/tracpy_performance
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Fig. 6: Separation distance between pairs of drifters run with circu-
lation model velocity fields output at different temporal resolutions
(given in seconds), averaged over many pairs of drifters. From
[Thyng2014a].

approach of storing tracks in a two-dimensional array of
drifter versus location in time, all drifter locations for a
given time step could be stored together on the same row.
This makes retrieval more difficult and requires ragged
rows, but eliminates the need to store a drifter that is
inactive. Alternatively, a sparse matrix could be used to
only store active drifters.

• Storage could be updated to full netCDF4 format.
• The modularity of the TracPy class should be improved.

Conclusions

A Python wrapper, TracPy, to a Lagrangrian trajectory model,
TRACMASS, combines the speed of the Fortran core algo-
rithm with the ease of using Python. TracPy uses netCDF4-
CLASSIC for saving trajectory paths, which is an improve-
ment over netCDF3 in both time required to save the file

and disk space required for the file. It also includes several
improvements such as including an iPython notebook user
manual and eliminating the use of global variables. TracPy
performance tests indicate expected behavior in simulation
time increase when increasing the number of drifters being
simulated. However, when increasing the number of grid cells
in the underlying numerical circulation model, preparing for
the run takes more additional time than it probably should. The
TracPy suite of code has been used for several applications so
far, with more in the works for the future, along with continual
code improvements.
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