Abstract—We present the motivation and architecture of Blaze, a library for cross-backend data-oriented computation. Blaze provides a standard interface to connect users familiar with NumPy and Pandas to other data analytics libraries like SQLAlchemy and Spark. We motivate the use of these projects through Blaze and discuss the benefits of standard interfaces on top of an increasingly varied software ecosystem. We give an overview of the Blaze architecture and then demonstrate its use on a typical problem. We use the abstract nature of Blaze to quickly benchmark and compare the performance of a variety of backends on a standard problem.

Index Terms—array programming, big data, numpy, scipy, pandas

Introduction

Standard Interfaces

Software and user communities around data analysis have changed remarkably in the last few years. The growth in this ecosystem come both from new computational systems and also from an increasing breadth of users. On the software side we see activity in different languages like Python [Pyt14], R [RLa14], and Julia [Jul12], and also in distributed systems like the projects surrounding the Hadoop File System (HDFS) [Bor07]. On the user side we see increased adoption both from physical scientists, with a strong tradition of computation, and also from social scientists and policy makers with less rigorous training. While these upward trends are encouraging, they also place significant strain on the programming ecosystem. Keeping novice users adapted to quickly changing programming paradigms and operational systems is challenging.

Standard interfaces facilitate interactions between layers of complex and changing systems. For example, NumPy fancy indexing syntax has become a standard interface among array programming systems within the Python ecosystem. Projects with very different implementations (e.g. NumPy [Van11], SciPy.sparse [Jon01], Theano [Ber10], SciDB [Bro10]) all provide the same indexing interface despite operating very differently.

Standard interfaces help users to adapt to changing technologies without learning new programming paradigms. Standard interfaces help project developers by bootstrapping a well trained community of users. Uniformity smoothes adoption and allows the ecosystem to evolve rapidly without the drag of everyone having to constantly learn new technologies.

Interactive Arrays and Tables

Analysis libraries like NumPy and Pandas demonstrate the value of interactive array and table objects. Projects such as these connect a broad base of users to efficient low-level operations through a high-level interface. This approach has given rise to large and productive software ecosystems within numeric Python (e.g. SciPy, Scikits, etc.) However, both NumPy and Pandas are largely restricted to an in-memory computational model, limiting problem sizes to a certain scale.

Concurrently developed data analytic ecosystems in other languages like R and Julia provide similar styles of functionality with different application foci. The Hadoop File System (HDFS) has accrued a menagerie of powerful distributed computing systems such as Hadoop, Spark, and Impala. The broader scientific computing community has produced projects like Elemental and SciDB for distributed array computing in various contexts. Finally, traditional SQL databases such as MySQL and Postgres remain both popular and very powerful.

As problem sizes increase and applications become more interdisciplinary, analysts increasingly require interaction with projects outside of the NumPy/Pandas ecosystem. Unfortunately, these foreign projects rarely feel as comfortable or as usable as the Pandas DataFrame.

What is Blaze

Blaze provides a familiar interface around computation on a diverse set of computational systems, or backends. It provides extensible mechanisms to connect this interface to new computational backends. Backends which the Blaze project explicitly provides hooks to include Python, Pandas, SQLAlchemy, and Spark.

This abstract connection to a variety of projects has the following virtues:

- Novice users gain access to relatively exotic technologies
- Users can trivially shift computational backends within a single workflow
Blaze separates data analytics into three isolated components:

- Projects can trivially shift backends as technologies change
- New technologies are provided with a stable interface and a trained set of users

Blaze doesn’t do any computation itself. Instead it depends heavily on existing projects to perform computations. Currently Blaze covers tabular computations as might fit into the SQL or Pandas model of computation. We intend to extend this model to arrays and other highly-regular computational models in the future.

Related Work

We separate related work into two categories:

1. Computational backends useful to Blaze
2. Similar efforts in uniform interfaces

Uniform symbolic interfaces on varied computational resources are also common. SQLAlchemy provides a uniform interface onto various SQL implementations. Theano [Ber10] maps array operations onto Python/NumPy, C, or CUDA code generation. While computer algebra projects like SymPy [Sym08] often have expression trees they also commonly include some form of code generation to low-level languages like C, Fortran but also to languages like LaTeX and DOT for visualization.

Blaze Architecture

Blaze separates data analytics into three isolated components:

- Data access: access data efficiently across different storage systems, e.g. CSV, HDF5, HDFS,
- Symbolic Expression: reason symbolically about the desired result, e.g. Join, Sum, Split-Apply-Combine,
- Backend Computation: execute computations on a variety of backends, e.g. SQL, Pandas, Spark,

We isolate these elements to enable experts to create well crafted solutions in each domain without needing to understand the others, e.g., a Pandas expert can contribute without knowing Spark and vice versa. Blaze provides abstraction layers between these components to enable them to work together cleanly.

The assembly of these components creates a multi-format, multi-backend computational engine capable of common data analytics operations in a variety of contexts.

Blaze Data

Blaze Data Descriptors are a family of Python objects that provide uniform access to a variety of common data formats. They provide standard iteration, insertion, and NumPy-like fancy indexing over on-disk files in common formats like CSV, JSON, and HDF5 in memory data structures like core Python data structures and NumPy arrays as well as more sophisticated data stores like SQL databases. The data descriptor interface is analogous to the Python buffer interface described in PEP 3118 [Oli06], but with a more flexible API.

Over the course of this article we’ll refer to the following simple accounts.csv file:

```python
id, name, balance
1, Alice, 100
2, Bob, -200
3, Charlie, 300
4, Denis, 400
5, Edith, -500
```

```python
>>> from blaze import *

>>> csv = CSV('accounts.csv') # Create data object

Iteration: Data descriptors expose the `__iter__` method, which provides an iterator over the outermost dimension of the data. This iterator yields vanilla Python objects by default.

```python
>>> list(csv)
[(1L, 'Alice', 100L),
 (2L, 'Bob', -200L),
 (3L, 'Charlie', 300L),
 (4L, 'Denis', 400L),
 (5L, 'Edith', -500L)]
```

Data descriptors also expose a `chunks` method, which also iterates over the outermost dimension but instead of yielding single rows of Python objects instead yields larger chunks of compactly stored data. These chunks emerge as DyND arrays that are more efficient for bulk processing and data transfer. DyND arrays support the `__array__` interface and so can be easily converted to NumPy arrays.

```python
>>> next(csv.chunks())
nd.array([[1, "Alice", 100],
 [2, "Bob", -200],
 [3, "Charlie", 300],
 [4, "Denis", 400],
 [5, "Edith", -500]],
 type="5 * {id : int64, name : string, balance : int64}"
```

Insertion: Analogously to `__iter__` and `chunks`, the methods `extend` and `extend_chunks` allow for insertion of data into the data descriptor. These methods take iterators of Python objects and DyND arrays respectively. The data is coerced into whatever form is native for the storage medium, e.g. text for CSV, or `INSERT` statements for SQL.

```python
>>> csv = CSV('accounts.csv', mode='a')

>>> csv.extend([(6, 'Frank', 600), ...
 (7, 'Georgina', 700)])
```

Migration: The combination of uniform iteration and insertion along with robust type coercion enables trivial data migration between storage systems.
select all accounts with a negative balance.

to which we can now apply operations. For example, we can
structured arrays and dataframes you can access fields as
matching that of NumPy and of Pandas. For example, in
expression trees, we can provide a familiar interface closely
iterations on expression nodes which construct new abstract
tables for which we’ll create an expression node
structure of the trees along the way. Let’s start with a single
up an expression on a table from the bottom, showing the
right line (see [iopro]), but don’t incur needless deserialization
costs (i.e., converting text into floats, ints, etc.) which tend
to dominate ingest times. Some storage systems, like HDF5,
support random access natively.

Cohesion: Different storage techniques manage data dif-
ferently. Cohesion between these disparate systems is accom-
plished with the two projects datashape, which specifies
the intended meaning of the data, and DyND, which manages
efficient type coercions and serves as an efficient intermediate
representation.

Blaze Expr

To be able to run analytics on a wide variety of computational
backends, it’s important to have a way to represent them
independently of any particular backend. Blaze uses abstract
eexpression trees for this, including convenient syntax for
creating them and a pluggable multiple dispatch mechanism
for lowering them to a computation backend. Once an analytics
computation is represented in this form, there is an opportunity
to do analysis and transformation on it prior to handing it off to
a backend, both for optimization purposes and to give heuristic
feedback to the user about the expected performance.

To illustrate how Blaze expression trees work, we will build
up an expression on a table from the bottom, showing the
structure of the tables along the way. Let’s start with a single
table, for which we’ll create an expression node

```python
>>> accts = TableSymbol('accounts',
 ... '(id: int, name: string, balance: int)')
```

to represent a abstract table of accounts. By defining op-
erations on expression nodes which construct new abstract
expression trees, we can provide a familiar interface closely
matching that of NumPy and of Pandas. For example, in
structured arrays and dataframes you can access fields as
accts['name'].

Extracting fields from the table gives us Column objects,
to which we can now apply operations. For example, we can
select all accounts with a negative balance.

```python
>>> deadbeats = accts[accts['balance'] < 0]['name']
```
or apply the split-apply-combine pattern to get the highest
grade in each class

```python
>>> By(accts, accts['name'], accts['balance'].sum())
```

In each of these cases we get an abstract expression tree
representing the analytics operation we have performed, in a
form independent of any particular backend.

Blaze Compute

Once an analytics expression is represented as a Blaze expres-
tion tree, it needs to be mapped onto a backend. This is done
by walking the tree using the multiple dispatch compute
function, which defines how an abstract Blaze operation maps
to an operation in the target backend.

To see how this works, let’s consider how to map the By
node from the previous section into a Pandas backend. The
code that handles this is an overload of compute which takes
a By node and a DataFrame object. First, each of the child
nodes must be computed, so compute gets called on the three
child nodes. This validates the provided dataframe against the
accts schema and extracts the 'name' and 'balance' columns
from it. Then, the pandas groupby call is used to group the
'balance' column according to the 'name' column, and apply
the sum operation.

Each backend can map the common analytics patterns
supported by Blaze to its way of dealing with it, either by
computing it on the fly as the Pandas backend does, or by
building up an expression in the target system such as an SQL
statement or an RDD map and groupByKey in Spark.

Multiple dispatch provides a pluggable mechanism to con-
nect new back ends, and handle interactions between different
backends.

Example

We demonstrate the pieces of Blaze in a small toy example.
Recall our accounts dataset

```python
>>> L = [(1, 'Alice', 100),
 (2, 'Bob', -200),
 (3, 'Charlie', 300),
 (4, 'Denis', 400),
 (5, 'Edith', -500)]
```

And our computation for names of account holders with
negative balances

```python
>>> deadbeats = accts[accts['balance'] < 0]['name']
```

We compose the abstract expression, deadbeats with the
data L using the function compute.

```python
>>> list(compute(deadbeats, L))
```
Note that the correct answer was returned as a list.
If we now store our same data \( L \) into a Pandas DataFrame and then run the exact same `deadbeats` computation against it, we find the same semantic answer.

```python
def DataFrame(L, column=['id', 'name', 'balance'])
completely(df, df)
1 Bob
4 Edith
Name: name, dtype: object
```

Similarly against Spark

```python
sc = pyspark.SparkContext('local', 'Spark-app')
rdd = sc.parallelize(L) # Distributed DataStructure
completely(deadbeats, rdd)
PythonRDD[1] at RDD at PythonRDD.scala:37
_.collect()
['Bob', 'Edith']
```

In each case of calling `compute(deadbeats, ...)` against a different data source, Blaze orchestrates the right computational backend to execute the desired query. The result is given in the form received and computation is done either with streaming Python, in memory Pandas, or distributed memory Spark. The user experience is identical in all cases.

**Blaze Interface**

The separation of expressions and backend computation provides a powerful multi-backend experience. Unfortunately, this separation may also be confusing for a novice programmer. To this end we provide an interactive object that feels much like a Pandas DataFrame, but in fact can be driving any of our backends.

```python
sql = SQL('postgresql://postgres@localhost', ...
'table(accounts)')
t = Table(sql)
t['id name balance
0 1 Alice 100
1 2 Bob -200
2 3 Charlie 300
3 4 Denis 400
4 5 Edith -500
', ['balance'] < 0]['name']
0 Bob
1 Edith
```

The astute reader will note the use of Pandas-like user experience and output. Note however, that these outputs are the result of computations on a Postgres database.

**Discussion**

Blaze provides both the ability to migrate data between data formats and to rapidly prototype common analytics operations against a wide variety of computational backends. It allows one to easily compare options and choose the best for a particular setting. As that setting changes, for example when data size grows considerably, our implementation can transition easily to a more suitable backend.

This paper gave an introduction to the benefits of separating expression of a computation from its computation. We expect future work to focus on integrating new backends, extending to array computations, and composing Blaze operations to transform existing in-memory backends like Pandas and DyND into an out-of-core and distributed setting.

**References**


