
PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017) 9

Software Transactional Memory in Pure Python

Dillon Niederhut‡∗

F

Abstract—There has been a growing interest in programming models for con-
currency. Strategies for dealing with shared data amongst parallel threads of
execution include immutable (as in Erlang) and locked (as in Python) data struc-
tures. A third option exists, called transactional memory (as in Haskell), which
includes thread-local journaling for operations on objects which are both mutable
and globally shared. Here, we present TraM, a pure Python implementation of
the TL2 algorithm for software transactional memory.

Index Terms—concurrency, threading, transactional memory

Introduction

Methods for sharing resources between multiple processes have
been of academic interest for quite some time [Lamport_1978].
Recently, the need for handling coincident events in client-server
interactions and the increasing scale of easily available data, espe-
cially in combination with the reduced momentum in increasing
the clock speed of CPUs, have promoted discussions of concurrent
software architecture [Lamport_et_al_1997]. In an ideal world, a
computationally intensive task could split its work across the cores
of a CPU in a way that does not require changes to the structure
of the task itself. However, sharing work or any other kind of data
in a concurrent system removes the guarantee that events occur
in a strict linear order, which in turn disrupts the atomiticity and
consistency inherent to single threads of control. To see concretely
how this might become a problem, consider the example below, in
which several Python threads are attempting to increment a global
counter1 .

from threading import Thread
import time
import random

unsafe_number = 0

def unsafe_example():
wait = random.random() / 10000
global unsafe_number
value = unsafe_number + 1
time.sleep(wait)
unsafe_number = value

In this particular example, we are forcing Python to behave
asynchronously by inserting sleeping calls, which allow the in-
terpreter to interrupt the execution of our "unsafe example", and
give control in the interpreter to another thread. This creates the

* Corresponding author: dillon.niederhut@gmail.com
‡ Enthought

Copyright © 2017 Dillon Niederhut. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

opportunity for inconsistent data, as the value of the "unsafe
number" might have changed between the time a thread reads
it, and the time a thread overwrites it. Thus, in the code below,
we would expect to see consistent output of the number 10, but
in practice will see something smaller, depending on the length of
the wait and the architecture of the system running the example2.
if __name__ == '__main__':

thread_list = []
for _ in range(10):

thread = Thread(target=unsafe_example)
thread_list.append(thread)

for thread in thread_list:
thread.start()

for thread in thread_list:
thread.join()

print(unsafe_number)

$ python run_test.py
$ 5
$ python run_test.py
$ 4
$ python run_test.py
$ 6

Models for handling shared data in memory, specifically, have in-
cluded restricting data structures into being immutable, or restrict-
ing access into those data structures with locking mechanisms. The
former solution is disadvantaged by the CPU and memory costs
of redundant data copies, while the latter suffers from deadlocks
and leaky abstractions [Peyton_2002].

A third approach involves the use of local operation jour-
nals that are validated before any data is modified in place
[Le_et_al_2016]. The strategy is similar to that used in database
transactions and self-correcting file systems, where atomicity,
consistency, and durability are enforced in part by maintaining
a history of changes that have been made to the copy of data in
memory but not yet persisted to the copy of data on disk. Within
a concurrent software application, each thread of control can keep
a similar history of proposed changes, and only modify the data
object shared across all threads once that journal of changes has
been approved. This strategy, where incremental changes in each
thread are applied all at once to shared, mutable structures, is
called software transactional memory (STM).

Software Transactional Memory

A specific implementation of STM, called Transactional Locking
Version II (TL2) was recently proposed which avoids most of
the copy-based and lock-based errors, along with the temporary
unsafety characteristic of earlier STM algorithms, by versioning
its data [Dice_et_al_2006]. Briefly, the algorithm works by setting

mailto:dillon.niederhut@gmail.com

10 PROC. OF THE 16th PYTHON IN SCIENCE CONF. (SCIPY 2017)

up a local journal for each thread, where proposed modifications
to shared data are kept. If no other thread has modified the original
data structures during the time needed to calculate the proposed
changes, those changes are swapped in memory for the old version
of the internal data.

Under work loads that are predominantly read operations,
TL2 outperforms lock-based strategies because it employs non-
blocking reads. Under workloads that are dominated by writes
to shared data structures, TL2 outperforms immutable strategies
in that is possible to only copy pieces of a structure. The actual
performance gain varies based on workload characteristics and
number of CPUs, but a comparison against a coarse-grained
POSIX mutex strategy shows gains of more than an order of
magnitude; and, comparisons against previous implementations
of STM are faster by constant factors roughly between 2 and 5
[Dice_et_al_2006].

The Python Implementation

The TraM package (available at https://github.com/deniederhut/
tram) attempts to recreate the TL2 algorithm for transactional
memory pythonically, and is not a one-for-one transliteration of
the original Java implementation. The chief difference is that
it does not use a global counter whose state is maintained by
primitives in the language, but is instead using the system clock.
This comes with the additional cost of making system calls, but
prevents us from the necessity of building a concurrency strategy
inside our concurrency strategy, since the clock state must be
shared across all threads.

The algorithm starts by entering a retry loop, that will attempt
to conduct the transaction a limited number of times before raising
an exception. Ideally, this number is large enough that the retry
limit would only be reached in the event of a system failure.
def transaction(self, *instance_list, write_action,

read_action=None):
"""Conduct threadsafe operation"""
if read_action is None:

read_action = self.read
retries = self.retries
time.sleep(self.sleep) # for safety tests
while retries:

with self:
read_list = read_action(instance_list)
self.write(write_action(instance_list,

read_list))
self.sequence_lock(instance_list)
time.sleep(self.sleep) #
try:

self.validate()
time.sleep(self.sleep) #
self.commit()

except ValidationError:
pass

except SuccessError:
break

finally:
self.sequence_unlock(instance_list)

self.decrement_retries()

It then creates two thread local logs. In our Python implementa-
tion, this occurs inside of a context manager.
def __enter__(self):

"""initialize local logs"""
self.read_log = []
self.write_log = []

It then reads local copies of data into its read log, and writes
proposed changes into its write log. The algorithm itself is agnostic
to what the reading and writing operations actually do.

def write(self, pair_list):
"""Write instance-value pairs to write log"""
for instance, value in pair_list:

self.write_log.append(
Record(instance, value, time.time())

)

This makes it easy to extend TraM’s threadsafe objects by writing
decorated, transactional methods.

def __iadd__(self, other):
@atomic
def fun(data, *args, **kwargs):

return data + other
do = Action()
do.transaction(self, write_action=fun)
return self

The algorithm then compares the version numbers of the original
objects against the local data to see if they have been updated.

def validate(self):
"""Raise exception if any instance reads are
no longer valid
"""
for record in self.read_log:

if record.instance.version > record.version:
raise ValidationError

If not, a lock is acquired only long enough to accomplish two
instructions: pointing the global data structure to the locally
modified data; and, updating the version number.

def commit(self):
"""Commit write log to memory"""
for record in self.write_log:

record.instance.data = record.value
record.instance.version = record.version

raise SuccessError

If the read log is not validated, the entire operation is aborted and
restarted. This suggests that the worst case scenario for TL2 is
when several threads are attempting to write to a single object, as
the invalidated threads will waste resources cycling through the
retry loop.

Using a similar safety test, we can see that the TraM Int object
correctly handles separate threads attempting to update its internal
data, even when the actions performed by each thread cannot be
guaranteed to be atomic themselves.

from tram import Int

def safe_example():
global safe_number
safe_number += 1

if __name__ == '__main__':

thread_list = []
for _ in range(10):

thread = Thread(target=safe_example)
thread_list.append(thread)

for thread in thread_list:
thread.start()

for thread in thread_list:
thread.join()

print(safe_number)

$ python run_test.py
$ 10
$ python run_test.py
$ 10
$ python run_test.py
$ 10

https://github.com/deniederhut/tram
https://github.com/deniederhut/tram

SOFTWARE TRANSACTIONAL MEMORY IN PURE PYTHON 11

Future Directions

This implementation of TL2 is specifically limited by imple-
mentation details of CPython, namely the global interpreter lock
(GIL), which ensures that all actions are executed in a linear order
given a single Python interpreter. Python’s libraries for concurrent
operations, including threading and the more modern async*s, are
still executed within a single interpreter and are therefore under
control of the GIL. Python’s library for multiple OS threads,
multiprocessing, will perform operations in parallel, but has a
small number of data strucutures that are capable of being shared.

In our motivating example, we have tricked the interpreter into
behaving as if this is not the case. While it is probably not a good
idea to encourage software developers to play fast and loose with
concurrency, there is a lot to be said for compartmentalizing the
complexity of shared data into the shared data structures them-
selves. Concurrent programs are notoriously difficult to debug,
and part of that complexity has to do with objects leaking their
safety abstraction into the procedures trying to use them.

However, the work on creating a transactional branch of PyPy
shows that there is some interest in concurrent applications for
Python. PyPy’s implementation of STM is currently based on
a global processing queue, modeled after the threading module,
with the transactional algorithms written in C [Meier_et_al_2014].
We hope that presenting an additional abstraction for compos-
ing transactional objects will encourage the exploration of STM
specifically and concurrency generally, in the python community.
Even if this does not occur, seeing the algorithm written out in a
read-friendly language may serve as an education tool, especially
as a starting point for creating a more clever version of the
implementation itself.

As an algorithm for threadsafe objects, TL2 itself has two
major limitations. The first, mentioned above, is that the algorithm
depends on a version clock which is used to create a post-hoc, par-
tial synchronization of procedures. In the original implementation,
this is a shared, global, mutable counter, which is incremented
every time any object is updated. In this implementation, it is the
system clock, which is shared but no longer mutable by structures
inside the algorithm. Both strategies have drawbacks.

The second major limitation is that attaching versions to ob-
jects works fine for updating data, but not for deleting the object.
In garbage collected languages like Java and Python, we can rely
on the runtime to keep track of whether those objects are still
needed, and can remove them only after their last reference. Any
implementation in a language which without automated memory
management will need its own solution to the deletion of versioned
data to avoid memory leaks.

REFERENCES

[Dice_et_al_2006] Dice, D., Shalev, O., & Shavit, N. (2006). Trans-
actional locking II. In International Symposium on
Distributed Computing (pp. 194-208). Springer Berlin
Heidelberg. https://doi.org/10.1007/11864219_14.

[Lamport_1978] Lamport, L. (1978). Time, clocks and the ordering of
events in a distributed system. In Communications of
the ACM, 21. (pp. 558-565).

1. Code has been modified from the original to avoid overfull hbox per the
proceedings requirements

2. The order of magnitude for the wait time was chosen by experimentation
to produce results between 3 and 7 on a 2.7GHz Intel Core i5.

[Le_et_al_2016] Le, M., Yates, R., & Fluet, M. (2016). Revisiting
software transactional memory in Haskell. https://doi.
org/10.1145/2976002.2976020. In Proceedings of the
9th International Symposium on Haskell (pp. 105-
113). ACM.

[Meier_et_al_2014] Meier, R., & Rigo, A. (2014). A way forward in
parallelising dynamic languages. In Proceedings of
the 9th International Workshop on Implementation,
Compilation, Optimization of Object-Oriented Lan-
guages, Programs and Systems PLE. ACM. https:
//doi.org/10.1145/2633301.2633305.

[Peyton_2002] Peyton Jones, S. (2002). Tackling the awkward squad:
monadic input/output, concurrency, exceptions, and
foreign-language calls in Haskell. In Engineering the-
ories of software construction (pp. 47-96).

[Lamport_et_al_1997] Shavit, N. & Touitou, D. (1997). Software transac-
tional memory. Distributed Computing, 10. (pp. 99-
116). http://doi.org/10.1007/s004460050028.

https://doi.org/10.1007/11864219_14
https://doi.org/10.1145/2976002.2976020
https://doi.org/10.1145/2976002.2976020
https://doi.org/10.1145/2633301.2633305
https://doi.org/10.1145/2633301.2633305
http://doi.org/10.1007/s004460050028

	Introduction
	Software Transactional Memory
	The Python Implementation
	Future Directions
	References

