Training machine learning models faster with Dask

Joesph Holt‡, Scott Sievert‡∗

Abstract—Machine learning (ML) relies on stochastic algorithms, all of which rely on gradient approximations with "batch size" examples. Growing the batch size as the optimization proceeds is a simple and usable method to reduce the training time, provided that the number of workers grows with the batch size. In this work, we provide a package that trains PyTorch models on Dask clusters, and can grow the batch size if desired. Our simulations indicate that for a particular model that uses GPUs for a popular image classification task, the training time can be reduced from about 120 minutes with standard SGD to 45 minutes with a variable batch size method.

Index Terms—machine learning, model training, distributed computation

Introduction

Training deep machine learning models takes a long time. For example, training a popular image classification model [RRSS19] to reasonable accuracy takes "around 17 hours" on Google servers. Another example includes training an NLP model for 10 days on 8 high-end GPUs [RNSSS18]. Notably, the number of floating point operations (FLOPs) required for "the largest AI training runs" doubles every 3.4 months.

Model training is fundamentally an optimization problem: it tries to find a model \(\mathbf{w} \) that minimizes a loss function \(F \):

\[
\mathbf{w} = \arg\min_{\mathbf{w}} F(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} f(\mathbf{w}; \mathbf{z}_i)
\]

where there are \(n \) examples in the training set, and each example is represented by \(\mathbf{z}_i \). For classification, \(\mathbf{z}_i = (\mathbf{x}_i, y_i) \) for a label \(y_i \) and feature vector \(\mathbf{x}_i \). The loss function \(F \) is the mean of the loss \(f \) over different examples. To compute this minimization for large scale machine learning, stochastic gradient descent (SGD) or a variant thereof is used [BCN18]. SGD is iterative, and the model update at each step \(k \) is computed via

\[
\mathbf{w}_{k+1} = \mathbf{w}_k - \frac{\gamma_k}{B_k} \sum_{i=1}^{B_k} \mathbf{g}(\mathbf{w}_k; \mathbf{z}_i)
\]

where \(\mathbf{g} \) is the gradient of the loss function \(f \) for some batch size \(B_k \geq 1 \), \(i_k \) is chosen uniformly at random and \(\gamma_k > 0 \) is the learning rate or step size. The objective function’s gradient is approximated with \(B_k \) examples – the gradient approximation \(\frac{1}{B_k} \sum_{i=1}^{B_k} \mathbf{g}(\mathbf{w}_k; \mathbf{z}_i) \) is an unbiased estimator of the loss function \(F \)'s gradient. This computation is common in the vast majority of SGD variants, and is found in popular variants like Adam [KB14], RMSprop [ZSJ†19], Adagrad [DHS11], Adadelta [Zei12], and averaged SGD [PJ92]. Most variants make modifications to the learning rate \(\gamma_k \) [DHS11], [Zei12], [KB14], [ZSJ†19].

Increasing the batch size \(B_k \) will reduce the number of model updates while not requiring more FLOPs or gradient computations – both empirically [SKYL17] and theoretically [Sie20]. Typically, the number of FLOPs controls the training time because training is performed with a single processor. At first, fewer model updates seems like an internal benefit that doesn’t affect training time.

The benefit comes when training with multiple machines, aka a distributed system. Notably, the time required to complete a single model update is (nearly) agnostic to the batch size provided the number of workers in a distributed system grows with the batch size. In one experiment, the time to complete a model update grows by 13% despite the batch size growing by a factor of 44 [GDG†17, Sec. 5.5]. This acceleration has also been observed with an increasing batch size schedule [SKYL17, Sec. 5.4].

Contributions

We provide software to accelerate machine learning model training, at least with certain distributed systems. For acceleration, the distributed system must be capable of assigning a different number of workers according to a fixed schedule. Specifically, this work provides the following:

- A Python software package to train machine learning models. The implementation provides a Scikit-learn API [BLB†13] to PyTorch models [PGM†19].
- Our software works on any cluster that is configured to work with Dask, many of which can change the number of workers on demand.5
- Extensive experiments to illustrate that our software can accelerate model training in terms of wall-clock time when an appropriate Dask cluster is used.

A key component of our software is that the number of workers grows with the batch size. Then, the model update time is agnostic to the batch size provided that communication is instantaneous. This has been shown empirically: Goyal et al. grow the batch

5. Including the default usage (through LocalCluster), supercomputers (through Dask Job-Queue), YARN/Hadoop clusters (through Dask Yarn) and Kubernetes clusters (through Dask Kubernetes).
size (and the number of workers with it) by a factor of 44 but the time for a single model update only increases by a factor of 1.13 [GDG+17, Sec. 5.5].

Now, let’s cover related work to gain understanding of why variable batch sizes provide a benefit in a distributed system. Then, let’s cover the details of our software before presenting simulations. These simulations confirm that model training can be accelerated if the number of workers grows with the batch size.

Methods to workaround limitations on the number of workers will be presented.

Related work

The data flow for distributed model training involves distributing the computation of the gradient estimate, \(\frac{1}{B} \sum_{i=1}^{B} g(w_i; z_i) \). Typically, each worker computes the gradients for \(B/P \) examples when there is a batch size of \(B + P \) machines. Then, the average of these gradients is taken and the model is updated.6

Clearly, Amdahl’s law is relevant because there are diminishing returns as the number of workers \(P \) is increased [GVY+18]. This as referred to as "strong scaling" because the batch size is fixed and the number of workers is treated as an internal detail. By contrast, growing the amount of data with the number of workers is known as "weak scaling." Of course, relevant experiments show that weak scaling exhibits better scaling than strong scaling [QST17].

Constant batch sizes

To circumvent Amdahl’s law, a common technique is to increase the batch size [ZLN+19] alongside the learning rate [JAGG20]. Using moderately large batch sizes yields high quality results more quickly and, in practice, requires no more computation than small batch sizes, both empirically [GDG+17] and theoretically [YPL+18].

There are many methods to choose the best constant batch size (e.g., [GGS19], [KSL+20]). Some methods are data dependent [YPL+18], and others depend on the model complexity. In particular, one method uses hardware topology (e.g., network bandwidth) in a distributed system [PKK+19].

Large constant batch sizes present generalization challenges [GDG+17]. The generalization error is hypothesized to come from “sharp” minima, strongly influenced by the learning rate and noise in the gradient estimate [KMN+16]. To match performance on the training dataset, careful thought must be given to hyperparameter selection [GDG+17, Sec. 3 and 5.2]. In fact, this has motivated algorithms specifically designed for large constant batch sizes and distributed systems [JAGG20], [JSH+18], [YGG17].

Increasing the batch size

Model quality greatly influences the amount of information in the gradient – which influences the batch size [Sie20]. For example, if models are poorly initialized, then using a large batch size has no benefit: the gradient—or direction to the optimal model—for each example will produce very similar numbers. An illustration is given in Figure 1.

Various methods to adaptively change the batch size based on model performance have been proposed [Sie20], [DYJG16], [BRH17], [BCNW12]. Of course, these methods are adaptive so computing the batch size requires computation (though there are workarounds [Sie20], [BRH17]).

Convergence results have been given for adaptive batch sizes [Sie20], [BCN18], [ZYF18]. Increasing the batch size is a provably good measure that requires far fewer model updates and no more computation than standard SGD for strongly convex functions [BCN18, Ch. 5], and all function classes if the batch size is provided by an oracle [Sie20]. Convergence proofs have also been given for the passively increasing the batch size, both for strongly convex functions [BCN18, Ch. 5] and for non-convex functions [ZYF18]. Both of these methods require fewer model updates than SGD and do not increase the number of gradient computations.

Notably, a geometric batch size increase schedule has shown great empirical performance in image classification [SKYL17]. Specifically, the number of model updates required to finish training decreased by a factor of 2.2 over standard SGD [SKYL17]. Smith et al. make an observation that increasing the batch size and decreasing the learning rate both decay the optimization’s “noise scale” (or variance of the model update), which has connections to simulated annealing [SKYL17]. This motivates increasing the batch size by the same factor the learning rate decays [SKYL17].

Both growing the batch size and using large constant batch sizes should require the same number of floating point operations as using standard SGD with small batch sizes to reach a particular training loss (respectively [Sie20], [BCN18] and [JAGG20], [YL+19], [YPL+18]). Some proof techniques suggest that variable batch size methods mirror gradient descent [Sie20], [KNS16], so correspondingly, the implementations do not require much additional hyperparameter tuning [SKYL17].

Distributed training with Dask

We have written ”AdaDamp,” a software package to to train a PyTorch model with a Scikit-learn API on any Dask cluster.7 It supports the use of constant or variable batch sizes, which fits nicely with Dask’s ability to change the number of workers.8 In this section, we will walk through the basic architecture of our software and an example usage. We will defer showing the primary benefit of our software to the experimental results.

Architecture

Our software uses a centralized synchronous parameter server and controls the data flow of the optimization with Dask (and does not rely on PyTorch’s distributed support). Specifically, the following happen on every model update:

1) The master node broadcasts the model to every worker.
2) The workers calculate the gradients.
3) The workers communicate the gradients back to the master.
4) The master performs a model update with the aggregated gradients.

We use Dask to implement this data flow, which adds some overhead.7 AdaDamp supports static batch sizes; however, there is little incentive to use AdaDamp with a static batch sizes: the

6. Related but tangential methods include methods to efficiently communicate the gradient estimates [AGL+17], [GTAZ18], [WSL+18].

7. While our software works with a constant batch size, the native implementations work with constant batch sizes and very likely have less overhead (e.g., PyTorch Distributed [LZV+20]).

Fig. 1: An illustration of why the batch size should increase. Here, let’s find a model \(\mathbf{w} = [w_x, w_y] \) that minimizes the function \(f(w_x, w_y) = \sum_{i=0}^{3} (w_x - x_i)^2 + (w_y - y_i)^2 \) where \(x_i \) and \(y_i \) are the x and y coordinates of each datum. When closer to the optimum at model A, the gradients are more “diverse,” so the magnitude and orientation of each datum’s gradient varies more [YPL+18].

The key component of AdaDamp is that the number of workers grows with the batch size. Then, the model update time is agnostic to the batch size (provided communication is instantaneous). This has been shown empirically: Goyal et al. grow the batch size (and the number of workers with it) by a factor of 44 but the time for a single model update only increases by a factor of 1.13 [GDG+17, Sec. 5.5].

Example usage

First, let’s create a standard PyTorch model. This is a simple definition; a more complicated model or one that uses GPUs can easily be substituted.

```python
import torch.nn as nn
import torch.nn.functional as F

class HiddenLayer(nn.Module):
    def __init__(self, features=4, hidden=2, out=1):
        super().__init__()
        self.hidden = nn.Linear(features, hidden)
        self.out = nn.Linear(hidden, out)

    def forward(self, x, *args, **kwargs):
        return self.out(F.relu(self.hidden(x)))
```

Now, let’s create our optimizer:

```python
from adadamp import DaskRegressor
import torch.optim as optim

est = DaskRegressor(
    module=HiddenLayer, module__features=10,
    optimizer=optim.Adadelta,
    optimizer__weight_decay=1e-7,
    max_epochs=10
)
```

So far, a PyTorch model and optimizer have been specified. As per the Scikit-learn API, we specify parameters for the model/optimizer with double underscores, so in our example `HiddenLayer(features=10)` will be created. We can set the batch size increase parameters at initialization if desired, or inside `set_params`.

```python
from adadamp.dampers import GeoDamp

est.set_params(
    batch_size=GeoDamp, batch_size__delay=60,
    batch_size__factor=5)
```

This will increase the batch size by a factor of 5 every 60 epochs, which is used in the experiments. Now, we can train:

```python
from sklearn.datasets import make_regression
X, y = make_regression(n_features=10)
X = torch.from_numpy(X.astype("float32"))
y = torch.from_numpy(y.astype("float32"))

est.fit(X, y)
```

Experiments

In this section, we present two sets of experiments. Both experiments will use the same setup, a Wide-ResNet model in a "16-4" architecture [ZK16] to perform image classification on the CIFAR10 dataset [KH09]. This is a deep learning model with about 2.75 million weights that requires a GPU to train. The experiments will provide evidence for the following points:

1) Increasing the batch size reduces the number of model updates.
2) The time required for model training is roughly proportional to the number of model updates (presuming the distributed system is configured correctly).

To provide evidence for these points, let’s run one set of experiments that varies the batch size increase schedule. These experiments will mirror the experiments by Smith et al. [SKYL17]. Additionally, let’s ensure that our software accelerates model training as the number of GPUs increase.

We train each batch size increase schedule once, and then write the historical performance to disk. This reduces the need for many GPUs, and allows us to simulate different networks and highlight the performance of Dask. That means that in our simulations, we simulate model training by having the computer sleep for an appropriate and realistic amount of time.

11. Full detail on these experiments can be found at https://github.com/stsievert/adadamp-experiments
12. Specifically, we used a NVIDIA T4 GPU with an Amazon g4dn.xlarge instance. Training consumes 2.2GB of GPU memory with a batch size of 32, and 5.5GB with a batch size of 256.
Batch size increase

To illustrate the primary benefit of our software, let’s perform several trainings that require a different number of model updates. These experiments explicitly mirror the experiments by Smith et al. [SKYL17, Sec. 5.1], which helps reduce the parameter tuning.

Largely, the same hyperparameters are used. These experiments only differ in the choice of batch size and learning rate, as shown in Figure 2. As in the Smith et al. experiments, every optimizer uses Nesterov momentum [Nes98] and the same momentum (0.9) and weight decay (0.5 · 10⁻³). They start with the same initial learning rate (0.05), ¹³ and either the learning rate is decreased or the batch size increases by a specified factor (5) at particular intervals (epochs 60, 120 and 180). This means that the variance of the model update is reduced by a constant factor at each update.

![Fig. 2: The learning rate and batch size decrease/increase schedules for various optimizers. After the maximum batch size is reached, the learning rate decays. A postfix of "(*2)" means the initial batch size twice as large (256 instead of 128).](image)

These different decay schedules exhibit the same performance in terms of number of epochs, which is proportional to the number of FLOPs, as shown in Figure 3. The number of FLOPs is (approximately) to the cost, at least on Amazon EC2 where the cost to rent a server tends to be proportional to the number of GPUs.

![Fig. 3: The performance of the LR/BR schedules in Figure 2, plotted with epochs—or passes through the dataset—on the x-axis.](image)

Future work is to avoid the overhead introduced by manually having Dask control the model update workflow. With any synchronous centralized system, the time required for any one model update is composed of the time required for the following tasks:

- Communication
- Worker tasks
- Model update
- Model update
- Model update

If the number of workers grows with the batch size, then the number of model updates is relevant to the wall-clock time. Figure 4 shows the number of model updates and wall-clock time required to reach a model of a particular test accuracy. Of course, there is some overhead to our current framework, which is why the number of model updates does not exactly correlate with the wall-clock time required to complete training. In summary, the time required to complete training is shown in Table 1.

Future work

Architecture

Fundamentally, the model weights can be either be held on a master node (centralized), or on every node (decentralized). Respectively, these storage architectures typically use point-to-point communication or an "all-reduce" communication. Both centralized [LAP⁺14], [ABC⁺16] and decentralized [LZV⁺20], [SDB18] communication architectures are common.

Future work is to avoid the overhead introduced by manually having Dask control the model update workflow. With any synchronous centralized system, the time required for any one model update is composed of the time required for the following tasks:

Learning rate

Batch size

Epochs

¹³ These are the same as Smith et al. [SKYL17] with the exception of learning rate (which had to be reduced by a factor of 2).
We have simulated the expected gain from the work of enabling decentralized communication with two networks that use a decentralized all-reduce strategy:

- **decentralized-medium**: It assumes an architecture with inter-worker bandwidth of 54 Gb/s and a latency of 0.05 µs.
- **centralized**: Uses a centralized communication strategy (as implemented) and the same network as **decentralized-medium**.
- **decentralized-high**: Has the same network as **decentralized-medium** but has an inter-worker bandwidth of 800 Gb/s and a latency of 0.025 µs.

To provide baseline performance, we also show the results with the current implementation:

- **centralized**: Uses the same network as **decentralized-medium** but with the centralized communication scheme that is currently implemented.

The software library dask-pytorch-ddp allows use of the PyTorch decentralized communications with Dask clusters, and is a thin wrapper around PyTorch’s distributed communication package. Future work will likely involve ensuring training can efficiently use a variable number of workers.

Table 2: Simulations that indicate how the training time (in minutes) will change under different architectures and networks. The "centralized" architecture is the currently implemented architecture, and has the same numbers as "training time" in Table 4.

<table>
<thead>
<tr>
<th>Maximum batch size</th>
<th>Centralized (moderate)</th>
<th>Decentralized (moderate)</th>
<th>Decentralized (high)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1k (*2)</td>
<td>69.9</td>
<td>45.1</td>
<td>43.5</td>
</tr>
<tr>
<td>3.2k</td>
<td>107.2</td>
<td>67.7</td>
<td>65.5</td>
</tr>
<tr>
<td>16k</td>
<td>107.5</td>
<td>67.7</td>
<td>65.7</td>
</tr>
<tr>
<td>640</td>
<td>116.9</td>
<td>73.6</td>
<td>71.8</td>
</tr>
<tr>
<td>128</td>
<td>200.2</td>
<td>121.7</td>
<td>121.5</td>
</tr>
</tbody>
</table>

Fig. 4: The same simulations as in Figure 3, but plotted with the number of model updates and wall-clock time plotted on the x-axis (the loss obeys a similar behavior as illustrated in the Appendix).

1. Broadcasting the model from the master node to all workers
2. Finishing gradient computation on all workers.
3. Communicating gradients back to master node.
4. Various overhead tasks (e.g., serialization, worker scheduling, etc).
5. Computing the model update after all gradients are computed & gathered.

Items (1), (3) and (4) are a large concern in our implementation. Decentralized communication has the advantage of eliminating items (1) and (4), and mitigates (3) with a smarter communication strategy (all-reduce vs. point-to-point). Item (2) is still a concern with straggler nodes [DCM+12], but recent work has achieved "near-linear scalability with 256 GPUs" in a homogeneous computing environment [LZV+20]. Items (2) and (5) can be avoided with asynchronous methods (e.g., [RRWN11], [ZHA16]).

That is, most of the concerns in our implementation will be resolved with a distributed communication strategy. The PyTorch distributed communication package uses a synchronous decentralized strategy, so the model is communicated to each worker and gradients are sent between workers with an all-reduce scheme [LZV+20]. It has some machine learning specific features to reduce the communication time, including performing both computation and communication concurrently as layer gradients become available [LZV+20, Sec. 3.2.3].

The software library dask-pytorch-ddp allows use of the PyTorch decentralized communications with Dask clusters, and is a thin wrapper around PyTorch’s distributed communication package. Future work will likely involve ensuring training can efficiently use a variable number of workers.

15. 50Gb/s and 25Gb/s networks can be obtained with g4dn.8xlarge and g4dn.xlarge instances respectively. g4dn.xlarge machines have 1 GPU each and are the least expensive for a fixed number of FLOPs on the GPU.

Conclusion

In this work, we have provided a package to train PyTorch ML models with Dask cluster. This package reduces the amount of time required to train a model with the current centralized setup. However, it can be further accelerated by integration with PyTorch’s distributed communication package as illustrated by extensive simulations. For a particular model, only 45 minutes is required for training – an improvement over the 120 minutes required with standard SGD.

Fig. 5: A single point represents one run in Figure 6. The point with about 80k model updates represents a single worker, so there’s no overhead in this decentralized simulation. Different network qualities are shown with different colors, and the “ideal” line is as if every model update is agnostic to batch size.

batch size. This simulation will use the decentralized-high network and has the advantage of removing any overhead. The results in Figure 7 show that the speedups start saturating around 128 examples/worker for the model used with a batch size of 512. Larger batch sizes will likely mirror this performance – computation is bottleneck with this model/dataset/hardware.

Fig. 6: The training time required for different optimizers under the decentralized-moderate network.

Fig. 7: The median time to complete a pass through the training set with a batch size of 512. As expected, the speedups diminish when there is little computation and much communication (say with 32 examples per worker).
APPENDIX

Fig. 8: The training time required for different optimizers under the decentralized-moderate network.

Fig. 9: The training time required for different optimizers under the decentralized-high network.

Fig. 10: The training time required for different optimizers under the centralized network.

REFERENCES

