StarCluster - NumPy/SciPy Computing on Amazon’s Elastic Compute Cloud (EC2)

Justin Riley

Software Tools for Academics and Researchers
Office of Educational Innovation and Technology
Massachusetts Institute of Technology

SciPy 2010
Outline

1 Introduction
 - STAR Group
 - Motivation behind StarCluster

2 Amazon EC2 Basics

3 StarCluster Overview
 - Features
 - Configuration
 - Quick Demo
 - Customizing StarCluster
 - Using Elastic Block Storage
 - Creating Plugins

4 Conclusions
 - Future Work
 - Where can I learn more?
Software Tools for Academics and Researchers

1. Work with faculty at MIT to develop software for classroom/research
Software Tools for Academics and Researchers

1. Work with faculty at MIT to develop software for classroom/research
2. StarBiochem - Protein Visualization Tool
Software Tools for Academics and Researchers

1. Work with faculty at MIT to develop software for classroom/research
2. StarBiochem - Protein Visualization Tool
3. StarGenetics - Genetic cross-simulator
Software Tools for Academics and Researchers

1. Work with faculty at MIT to develop software for classroom/research
2. StarBiochem - Protein Visualization Tool
3. StarGenetics - Genetic cross-simulator
4. StarMolsim - Web-based MD/Quantum simulations
Software Tools for Academics and Researchers

1. Work with faculty at MIT to develop software for classroom/research
2. StarBiochem - Protein Visualization Tool
3. StarGenetics - Genetic cross-simulator
4. StarMolsim - Web-based MD/Quantum simulations
5. ... and more (http://web.mit.edu/star)
Motivations for StarCluster...

Cluster Configuration is Hard

Cluster Configuration
Motivations for StarCluster...

Cluster Configuration is Hard

- Obtaining access to hardware can be a challenge
Motivations for StarCluster...

Cluster Configuration is Hard

- Obtaining access to hardware can be a challenge
- Configuring and maintaining cluster configurations is hard
Motivations for StarCluster...

Cluster Configuration is Hard

- Obtaining access to hardware can be a challenge
- Configuring and maintaining cluster configurations is hard
- Traditional resources = administrative overhead
StarHPC...
Motivation behind StarCluster

StarMolSim...

Figure: StarMolSim Overview

MolSim using GenePattern
Outline

1 Introduction
 - STAR Group
 - Motivation behind StarCluster

2 Amazon EC2 Basics

3 StarCluster Overview
 - Features
 - Configuration
 - Quick Demo
 - Customizing StarCluster
 - Using Elastic Block Storage
 - Creating Plugins

4 Conclusions
 - Future Work
 - Where can I learn more?
Elastic Compute Cloud Overview

- Infrastructure as a Service (IaaS) Cloud Computing Model
Elastic Compute Cloud Overview

- Infrastructure as a Service (IaaS) Cloud Computing Model
- Request up to 20 virtual machines by default
Elastic Compute Cloud Overview

- Infrastructure as a Service (IaaS) Cloud Computing Model
- Request up to 20 virtual machines by default
- Full root access via SSH
Elastic Compute Cloud Overview

- Infrastructure as a Service (IaaS) Cloud Computing Model
- Request up to 20 virtual machines by default
- Full root access via SSH
- Only pay for what you use
Elastic Block Storage

- Analagous to a "Virtual USB pendrive"
Elastic Block Storage

- Analagous to a "Virtual USB pendrive"
- Size can be anywhere from 1GB-1TB per volume
Elastic Block Storage

- Analagous to a "Virtual USB pendrive"
- Size can be anywhere from 1GB-1TB per volume
- Supports snapshotting volumes to create backups
Elastic Block Storage

- Analagous to a "Virtual USB pendrive"
- Size can be anywhere from 1GB-1TB per volume
- Supports snapshotting volumes to create backups
- Ability to create new volumes based on snapshots
Standard Instances

Definition

1 Compute Unit (CU) = 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Arch</th>
<th>CPU (CU)</th>
<th>RAM</th>
<th>Storage</th>
<th>I/O</th>
<th>Cost/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>32bit</td>
<td>1 (x1)</td>
<td>1.7GB</td>
<td>160GB</td>
<td>Moderate</td>
<td>$0.085</td>
</tr>
<tr>
<td>Large</td>
<td>64bit</td>
<td>2 (x2)</td>
<td>7.5GB</td>
<td>860GB</td>
<td>High</td>
<td>$0.34</td>
</tr>
<tr>
<td>X-Large</td>
<td>64bit</td>
<td>2 (x4)</td>
<td>15GB</td>
<td>1.69TB</td>
<td>High</td>
<td>$0.68</td>
</tr>
</tbody>
</table>
High-Memory Instances

Definition

1 Compute Unit (CU) = 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Arch</th>
<th>CPU (CU)</th>
<th>RAM</th>
<th>Storage</th>
<th>I/O</th>
<th>Cost/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Large</td>
<td>64bit</td>
<td>3.25 (x2)</td>
<td>17.1GB</td>
<td>420GB</td>
<td>Moderate</td>
<td>$0.50</td>
</tr>
<tr>
<td>2X-Large</td>
<td>64bit</td>
<td>3.25 (x4)</td>
<td>34.2GB</td>
<td>850GB</td>
<td>High</td>
<td>$1.20</td>
</tr>
<tr>
<td>4X-Large</td>
<td>64bit</td>
<td>3.25 (x8)</td>
<td>68.4GB</td>
<td>1.69TB</td>
<td>High</td>
<td>$2.40</td>
</tr>
</tbody>
</table>
High-CPU Instances

Definition

1 Compute Unit (CU) = 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Arch</th>
<th>CPU (CU)</th>
<th>RAM</th>
<th>Storage</th>
<th>I/O</th>
<th>Cost/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>32bit</td>
<td>2.5 (x2)</td>
<td>1.7GB</td>
<td>160GB</td>
<td>Moderate</td>
<td>$0.17</td>
</tr>
<tr>
<td>X-Large</td>
<td>64bit</td>
<td>2.5 (x8)</td>
<td>15GB</td>
<td>1.69TB</td>
<td>High</td>
<td>$0.68</td>
</tr>
</tbody>
</table>
AWS Funding Opportunities

AWS In Education

http://aws.amazon.com/education/
AWS Funding Opportunities

AWS In Education

http://aws.amazon.com/education/

- Teaching Grants for educators using AWS in courses
AWS Funding Opportunities

AWS In Education

http://aws.amazon.com/education/

- Teaching Grants for educators using AWS in courses
- Research Grants for academic researchers using AWS in their work
AWS Funding Opportunities

AWS In Education

http://aws.amazon.com/education/

- Teaching Grants for educators using AWS in courses
- Research Grants for academic researchers using AWS in their work
- Project Grants for student organizations pursuing entrepreneurial endeavors
Questions?
Outline

1. Introduction
 - STAR Group
 - Motivation behind StarCluster
2. Amazon EC2 Basics
3. StarCluster Overview
 - Features
 - Configuration
 - Quick Demo
 - Customizing StarCluster
 - Using Elastic Block Storage
 - Creating Plugins
4. Conclusions
 - Future Work
 - Where can I learn more?

Justin Riley
Massachusetts Institute of Technology

StarCluster - NumPy/SciPy Computing on Amazon’s Elastic Compute Cloud (EC2)
About

StarCluster allows anyone to create their own scientific computing cluster on Amazon’s Elastic Compute Cloud (EC2)

Dependencies:
- Registered and fully configured EC2 account
About

StarCluster allows anyone to create their own scientific computing cluster on Amazon’s Elastic Compute Cloud (EC2)

Dependencies:
- Registered and fully configured EC2 account
- Python 2.4+
StarCluster allows anyone to create their own scientific computing cluster on Amazon’s Elastic Compute Cloud (EC2)

Dependencies:
- Registered and fully configured EC2 account
- Python 2.4+
- Boto (AWS library for Python)
StarCluster allows anyone to create their own scientific computing cluster on Amazon’s Elastic Compute Cloud (EC2)

Dependencies:
- Registered and fully configured EC2 account
- Python 2.4+
- Boto (AWS library for Python)
- Paramiko (SSH library for Python)
StarCluster Features

- Simple configuration file for defining cluster settings
StarCluster Features

- Simple configuration file for defining cluster settings
- Single "start" command to create a cluster
StarCluster Features

- Simple configuration file for defining cluster settings
- Single "start" command to create a cluster
- "stop" command to terminate a cluster and stop paying for it
StarCluster Features

- Simple configuration file for defining cluster settings
- Single "start" command to create a cluster
- "stop" command to terminate a cluster and stop paying for it
- Automatic configuration of:
 - Network File System (/home and all EBS volumes)
 - Sun Grid Engine
 - Passwordless-ssh
 - OpenMPI, etc
StarCluster Features

- Simple configuration file for defining cluster settings
- Single ”start” command to create a cluster
- ”stop” command to terminate a cluster and stop paying for it
- Automatic configuration of:
 - Network File System (/home and all EBS volumes)
StarCluster Features

- Simple configuration file for defining cluster settings
- Single "start" command to create a cluster
- "stop" command to terminate a cluster and stop paying for it
- Automatic configuration of:
 - Network File System (/home and all EBS volumes)
 - Sun Grid Engine
StarCluster Features

- Simple configuration file for defining cluster settings
- Single "start" command to create a cluster
- "stop" command to terminate a cluster and stop paying for it
- Automatic configuration of:
 - Network File System (/home and all EBS volumes)
 - Sun Grid Engine
 - Passwordless-ssh
StarCluster Features

- Simple configuration file for defining cluster settings
- Single "start" command to create a cluster
- "stop" command to terminate a cluster and stop paying for it
- Automatic configuration of:
 - Network File System (/home and all EBS volumes)
 - Sun Grid Engine
 - Passwordless-ssh
 - OpenMPI, etc
NumPy/SciPy on StarCluster

- Custom compiled Atlas/NumPy/SciPy for 8-core instance types
NumPy/SciPy on StarCluster

- Custom compiled Atlas/NumPy/SciPy for 8-core instance types
Configuration

- INI-based configuration file
Configuration

- INI-based configuration file
- "cluster templates" define cluster configuration
Example Config

```bash
[aws info]
aws_access_key_id = #your_aws_access_key_id
aws_secret_access_key = #your_secret_access_key
aws_user_id = #your_userid

[key mykeypair]
key_location = /home/myuser/.ssh/mykeypair.rsa

[cluster smallcluster]
cluster_size = 2
keyname = gsg-keypair
cluster_user = sgeadmin
cluster_shell = bash
node_image_id = ami-d1c42db8
node_instance_type = m1.small
```

Justin Riley
Massachusetts Institute of Technology

StarCluster - NumPy/SciPy Computing on Amazon’s Elastic Compute Cloud (EC2)
Re-using cluster template settings:

```bash
1 ....
2
3 [ cluster largecluster ]
4 extends=smallcluster
5  cluster_size =16
6 node_image_id = ami-a5c42dcc
7 node_instance_type = c1.xlarge
```
Brief Demo

1. `$ starcluster start physicscluster`
2. >>>> Starting cluster ...
3. >>>> Launching a 2–node cluster...
4. >>>> Launching master node...
5. >>>> Launching worker nodes...
6. >>>> Waiting for cluster to start ...
7. >>>> The master node is ec2–123–12–12–123.compute–1.amazonaws.com
8. >>>> Attaching volume vol–99999999 to master node on /dev/sdz ...
9. >>>> Setting up the cluster ...
10. >>>> Mounting EBS volume vol–99999999 on /home...
11. >>>> Creating cluster user: myuser
12. >>>> Configuring scratch space for user: myuser
13. >>>> Configuring /etc/hosts on each node
14. >>>> Configuring NFS...
15. >>>> Configuring passwordless ssh for user: myuser
16. >>>> Installing Sun Grid Engine ...
How do I install my own software?

- Launch a single instance using either 32/64bit StarCluster AMI
Customizing StarCluster

How do I install my own software?

- Launch a single instance using either 32/64bit StarCluster AMI
- Login via ssh and install software
Customizing StarCluster

How do I install my own software?

- Launch a single instance using either 32/64bit StarCluster AMI
- Login via ssh and install software
- Use starcluster’s ”createimage” command to create a new custom AMI
How do I install my own software?

- Launch a single instance using either 32/64bit StarCluster AMI
- Login via ssh and install software
- Use starcluster’s ”createimage” command to create a new custom AMI
- Specify your new AMI id in the StarCluster configuration file
Elastic Block Storage

- Attached (mounted) to the master node
Elastic Block Storage

- Attached (mounted) to the master node
- NFS-shared to all nodes
Elastic Block Storage

- Attached (mounted) to the master node
- NFS-shared to all nodes
- All data written to EBS is persisted automatically
Creating New EBS Volume with StarCluster

How do we create new EBS volumes?

1. $ starcluster createvolume 20 us-east-1d

- This command automatically handles:
Creating New EBS Volume with StarCluster

How do we create new EBS volumes?

1. `$ starcluster createvolume 20 us–east–1d`

- This command automatically handles:
- Launching a "host" instance
Creating New EBS Volume with StarCluster

How do we create new EBS volumes?

1. `$ starcluster createvolume 20 us-east-1d`

- This command automatically handles:
 - Launching a "host" instance
 - Attaching the volume to the instance
Creating New EBS Volume with StarCluster

How do we create new EBS volumes?

1 $ starcluster createvolume 20 us-east-1d

- This command automatically handles:
 - Launching a "host" instance
 - Attaching the volume to the instance
 - Partitioning the entire volume into a single partition
Creating New EBS Volume with StarCluster

How do we create new EBS volumes?

1. `$ starcluster createvolume 20 us–east–1d`

- This command automatically handles:
 - Launching a "host" instance
 - Attaching the volume to the instance
 - Partitioning the entire volume into a single partition
 - Formatting the volume with ext3 filesystem
Creating New EBS Volume with StarCluster

How do we create new EBS volumes?

1. `$ starcluster createvolume 20 us-east-1d`

- This command automatically handles:
 - Launching a "host" instance
 - Attaching the volume to the instance
 - Partitioning the entire volume into a single partition
 - Formatting the volume with ext3 filesystem
 - Terminating the host instance
Ubuntu.py

```python
from starcluster.logger import log
from starcluster.clustersetup import ClusterSetup

class PackageInstaller(ClusterSetup):

    def __init__(self, pkg_to_install):
        self.pkg_to_install = pkg_to_install

    def run(self, nodes, master, user, user_shell, volumes):
        for node in nodes:
            log.info("Installing %s on node: %s" %
                      (self.pkg_to_install, node.alias))
            node.ssh.execute('apt-get -y install %s' %
                             self.pkg_to_install)
```

Justin Riley
Massachusetts Institute of Technology

StarCluster - NumPy/SciPy Computing on Amazon's Elastic Compute Cloud (EC2)
Creating Plugins

Plugin Config

Enabling the ubuntu plugin in the config

1. [plugin pkginstaller]
2. setup_class = ubuntu.PackageInstaller
3. pkg_to_install = htop
Questions?
Outline

1. Introduction
 - STAR Group
 - Motivation behind StarCluster

2. Amazon EC2 Basics

3. StarCluster Overview
 - Features
 - Configuration
 - Quick Demo
 - Customizing StarCluster
 - Using Elastic Block Storage
 - Creating Plugins

4. Conclusions
 - Future Work
 - Where can I learn more?

Justin Riley
Massachusetts Institute of Technology

StarCluster - NumPy/SciPy Computing on Amazon’s Elastic Compute Cloud (EC2)
Future Work

- Dynamic Load Balancing via Sun Grid Engine
Future Work

- Dynamic Load Balancing via Sun Grid Engine
- Supported plugins (ipcluster, mpi implementations, etc)
Questions and Answers

Want to know more?

- Homepage: http://web.mit.edu/starcluster
Questions and Answers

Want to know more?

- Homepage: http://web.mit.edu/starcluster
- Code: http://github.com/jtriley/StarCluster
Questions and Answers

Want to know more?

- Homepage: http://web.mit.edu/starcluster
- Code: http://github.com/jtriley/StarCluster
- Mailing list:
 http://web.mit.edu/stardev/cluster/mailinglist.html

Justin Riley
Massachusetts Institute of Technology

StarCluster - NumPy/SciPy Computing on Amazon’s Elastic Compute Cloud (EC2)
Questions and Answers

Want to know more?

- Homepage: http://web.mit.edu/starcluster
- Code: http://github.com/jtriley/StarCluster
- Mailing list: http://web.mit.edu/stardev/cluster/mailinglist.html
- Software Tools for Academics and Researchers: http://web.mit.edu/star