
Ken Elkabany, Co-Founder
ken@picloud.com
www.picloud.com
June 30, 2010
Cloud computing is a style of computing in which **dynamically scalable** and often **virtualized** resources are provided as a service over the Internet.
Cloud Characteristics

- Low upfront costs
 - Servers are not purchased, only rented (utility computing)

- Multi-tenant
 - Centralization of infrastructure geographically
 - High-levels of utilization and efficiency

- Scalable and Agile
 - On-demand provisioning of resources
Computing Power History

Platform Development Time

Hardware Provisioning Time

Today

(Cloud) Virtual Servers

Dedicated

Colocation

Private Racks

- 6 Months
- 2 Months
- Weeks
- Hours

powered by Amazon Web Services™
The Next Step

Servers
Computing Power as a Utility

1000+ Cores

Always available
Accessible in seconds
PiCloud Platform

- Python-integrated cloud computing platform

```python
> import cloud
> from myfuncs import f1, f2, f3
> 
```

PiCloud User

PiCloud
PyCloud Platform

- Python-integrated cloud computing platform

```python
> import cloud
> from myfuncs import f1, f2, f3
> id1 = cloud.call(f1)
> 
```
PiCloud Platform

- Python-integrated cloud computing platform

```python
> import cloud
> from myfuncs import f1, f2, f3
> id1 = cloud.call(f1)
> id2 = cloud.call(f2, x)
```
PiCloud Platform

- Python-integrated cloud computing platform

Unified Monitoring

<table>
<thead>
<tr>
<th>id</th>
<th>parent</th>
<th>key</th>
<th>hostname</th>
<th>function</th>
<th>label</th>
<th>created</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>250300</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-7 22:14:58</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>250299</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-7 22:14:37</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>250298</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-7 22:13:48</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>[250298,250297]</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-7 22:13:48</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>[250298,250297]</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-7 22:13:48</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>250237</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>hi at <stdin>:1</td>
<td>2010-6-7 0:32:10</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>250236</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td><lambda> at <stdin>:1</td>
<td>2010-6-6 22:36:31</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>250235</td>
<td>2</td>
<td>braincore-m</td>
<td>main</td>
<td><lambda> at <stdin>:1</td>
<td>2010-6-6 18:24:11</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>250234</td>
<td>2</td>
<td>braincore-m</td>
<td>main</td>
<td><lambda> at <stdin>:1</td>
<td>2010-6-6 18:22:57</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>[249734,250233]</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-3 2:33:33</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>[249734,249733]</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-3 2:33:33</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>[249734,249633]</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-3 2:32:54</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>249533</td>
<td>2</td>
<td>coreofthebrain-d</td>
<td>main</td>
<td>ffmpeg at <stdin>:1</td>
<td>2010-6-1 12:47:35</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
PiCloud in Action

- AutoTagger
 - Facebook photo-tagging assistant

- Basic Functionality
 - Detect and extract faces from a single photo
 - Repeatedly apply face detection to all photos in an album
Goals

- Python-integrated cloud computing platform

 Elastic
 - Pay as you Use
 - On-demand access to Massive Parallelization

 Lock-in Free
 - Data can live anywhere and in any form

 Easy to use
 - Developer friendly; Minimal API
 - You’re already using the “language of the cloud”
Architecture

Every component is designed to scale.

Python Application

```python
> import cloud
> id = cloud.call(foo)
> res = cloud.result(id)
```

cloud library
Identifies and transmits data and source dependencies

Monitoring

Web Request Load Balancer
-nginx
-Elastic Load Balancer

Job Acceptor
Receives incoming library calls

Apache web servers running Django via mod_wsgi

Stores Python Packages
-OpenAFS

Distributed File System

Distributed Relational Database

Job book keeping
-MySQL

Job result storage
-CouchDB

Workers (Number crunchers)

Overseers

Load balance workers and schedule jobs

© Copyright 2010 by PiCloud, Inc.
Scientific Computing

- We use the Enthought Python Distribution
 - Includes 75+ of the latest scientific packages
 - Numpy, Scipy
- PiCloud can accelerate all parallelizable computation
 - Protein Analysis
 - Cryptography
 - Astronomical and geological data analysis
 - Neural readings analysis
Conclusion

- “The cloud” is making computing resources available and accessible for all.
- Using the cloud doesn’t have to be difficult.
- PiCloud can help you!
 - Try us out at http://www.picloud.com
 - Stop by our table and say hi 😊