High Performance Computing in Python using NumPy and the Global Arrays Toolkit

Jeff Daily

P. Saddayappan, Bruce Palmer, Manojkumar Krishnan, Sriram Krishnamoorthy, Abhinav Vishnu, Daniel Chavarría, Patrick Nichols

1Pacific Northwest National Laboratory
2Ohio State University
Outline of the Tutorial

- Parallel Programming Models
 - Performance vs. Abstraction vs. Generality
 - Distributed Data vs. Shared Memory
 - One-sided communication vs. Message Passing
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAlN)
Parallel Programming Models

► Single Threaded
 ■ Data Parallel, e.g. HPF

► Multiple Processes
 ■ Partitioned-Local Data Access
 ● MPI
 ■ Uniform-Global-Shared Data Access
 ● OpenMP
 ■ Partitioned-Global-Shared Data Access
 ● Co-Array Fortran
 ■ Uniform-Global-Shared + Partitioned Data Access
 ● UPC, Global Arrays, X10
Parallel Programming Models in Python

- Single Threaded
 - Data Parallel, e.g. HPF

- Multiple Processes
 - Partitioned-Local Data Access
 - MPI (mpi4py)
 - Uniform-Global-Shared Data Access
 - OpenMP (within a C extension – no direct Cython support yet)
 - Partitioned-Global-Shared Data Access
 - Co-Array Fortran
 - Uniform-Global-Shared + Partitioned Data Access
 - UPC, Global Arrays (as of 5.0.x), X10

- Others: PyZMQ, IPython, PiCloud, and more
High Performance Fortran

- Single-threaded view of computation
- Data parallelism and parallel loops
- User-specified data distributions for arrays
- Compiler transforms HPF program to SPMD program
 - Communication optimization critical to performance
- Programmer may not be conscious of communication implications of parallel program

```
HPF$ Independent
DO I = 1,N
  HPF$ Independent
  DO J = 1,N
    A(I,J) = B(J,I)
  END
END

s=s+1
A(1:100) = B(0:99)+B(2:101)
HPF$ Independent
Do I = 1,100
  A(I) = B(I-1)+B(I+1)
End Do
```
Message Passing Interface

- Most widely used parallel programming model today
- Bindings for Fortran, C, C++, MATLAB
- P parallel processes, each with local data
 - MPI-1: Send/receive messages for inter-process communication
 - MPI-2: One-sided get/put data access from/to local data at remote process
- Explicit control of all inter-processor communication
 - Advantage: Programmer is conscious of communication overheads and attempts to minimize it
 - Drawback: Program development/debugging is tedious due to the partitioned-local view of the data
OpenMP

- Uniform-Global view of shared data
- Available for Fortran, C, C++
- Work-sharing constructs (parallel loops and sections) and global-shared data view ease program development
- Disadvantage: Data locality issues obscured by programming model
Co-Array Fortran

- Partitioned, but global-shared data view
- SPMD programming model with local and shared variables
- Shared variables have additional co-array dimension(s), mapped to process space; each process can directly access array elements in the space of other processes
 - \(A(I,J) = A(I,J)[me-1] + A(I,J)[me+1] \)
- Compiler optimization of communication critical to performance, but all non-local access is explicit
Unified Parallel C (UPC)

- SPMD programming model with global shared view for arrays as well as pointer-based data structures
- Compiler optimizations critical for controlling inter-processor communication overhead
 - Very challenging problem since local vs. remote access is not explicit in syntax (unlike Co-Array Fortran)
 - Linearization of multidimensional arrays makes compiler optimization of communication very difficult
- Performance study with NAS benchmarks (PPoPP 2005, Mellor-Crummey et. al.) compared CAF and UPC
 - Co-Array Fortran had significantly better scalability
 - Linearization of multi-dimensional arrays in UPC was a significant source of overhead
Global Arrays vs. Other Models

► Advantages:

■ Inter-operates with MPI
 ● Use more convenient global-shared view for multi-dimensional arrays, but can use MPI model wherever needed

■ Data-locality and granularity control is explicit with GA’s get-compute-put model, unlike the non-transparent communication overheads with other models (except MPI)

■ Library-based approach: does not rely upon smart compiler optimizations to achieve high performance

► Disadvantage:

■ Only useable for array data structures
Performance vs. Abstraction and Generality

- Domain Specific Systems
- OpenMP
- Autoparallelized C/Fortran90
- CAF
- MPI
- GA

“Holy Grail”

Scalability vs. Abstraction vs. Generality
Performance vs. Abstraction and Generality

- Domain Specific Systems
- GA
- GA+Python?
- “Holy Grail”
- CAF
- MPI
- OpenMP
- Autoparallelized C/Fortran90

Scalability
Abstraction-M
Generality
Distributed Data

- Data is explicitly associated with each processor, accessing data requires specifying the location of the data on the processor and the processor itself.
- Data locality is explicit but data access is complicated. Distributed computing is typically implemented with message passing (e.g. MPI)
- To copy element from P5 to P0 using MPI
 - P0 posts `comm.recv(obj, 5)`
 - P5 posts `comm.send(buf[27], 5)`
Shared Memory

- Data is in a globally accessible address space, any processor can access data by specifying its location using a global index.
- Data is mapped out in a natural manner (usually corresponding to the original problem) and access is easy. Information on data locality is obscured and leads to loss of performance.
Global Arrays

- Distributed dense arrays that can be accessed through a shared memory-like style
- Single, shared data structure/global indexing
 - E.g., `ga.get(a, (3, 2))` rather than `buf[6]` on process 1
One-sided Communication

Message Passing:
Message requires cooperation on both sides. The processor sending the message (P1) and the processor receiving the message (P0) must both participate.

One-sided Communication:
Once message is initiated on sending processor (P1) the sending processor can continue computation. Receiving processor (P0) is not involved. Data is copied directly from switch into memory on P0.
Remote Data Access in GA vs MPI

Message Passing:

- Identify size and location of data blocks.
- Loop over processors:
 - If (me = P_N) then
 - Pack data in local message buffer.
 - Send block of data to message buffer on P0.
 - Else if (me = P0) then
 - Receive block of data from P_N in message buffer.
 - Unpack data from message buffer to local buffer.
- Endif
- End loop
- Copy local data on P0 to local buffer.

Global Arrays:

```python
buf = ga.get(g_a, lo=None, hi=None, buffer=None)
```

- Global Array handle
- Global upper and lower indices of data patch
- Local ndarray buffer

Diagram:

- Processes P0, P1, P2, P3
- Data transfer between processes

Pacific Northwest National Laboratory

SciPy 2011 Tutorial – July 12

Proudly Operated by Battelle Since 1965
Shared data model in context of distributed dense arrays

Much simpler than message-passing for many applications

Complete environment for parallel code development

Compatible with MPI

Data locality control similar to distributed memory/message passing model

Extensible

Scalable
Outline of the Tutorial

▶ Parallel Programming Models
▶ Overview of the Global Arrays Programming Model
 ■ Downloading, Building GA using `configure && make`
 ■ 10 Basic GA Commands
 ■ GA Models for Computation
▶ Intermediate GA Programming Concepts and Samples
▶ Advanced GA Programming Concepts and Samples
▶ Global Arrays in NumPy (GAiN)
Source Code and More Information

- Version 5.0.3 available, trunk to become 5.1
- Homepage at http://www.emsl.pnl.gov/docs/global/
- Platforms
 - IBM SP, BlueGene
 - Cray XT, XE6 (Gemini)
 - Linux Cluster with Ethernet, Myrinet, Infiniband, or Quadrics
 - Solaris
 - Fujitsu
 - Hitachi
 - NEC
 - HP
 - Windows
Writing and Running GA programs

- Topics to cover so that we can all start programming!
 - Installing GA
 - Writing GA programs
 - Running GA programs
Writing and Running GA programs (cont.)

► GA Webpage
 ■ http://www.emsl.pnl.gov/docs/global/
 ■ GA papers, APIs, user manual, etc.
 ■ Google: Global Arrays

► GA API Documentation
 ■ GA Webpage, click on “User Interface”
 ■ http://www.emsl.pnl.gov/docs/global/userinterface.html

► GA Support/Help/Announcements
 ■ hpctools@googlegroups.com
Global Arrays and MPI are completely interoperable. Code can contain calls to both libraries.

- **Application programming language interface**
 - Fortran 77
 - C
 - C++
 - Python
 - Babel

- **distributed arrays layer**
 - memory management
 - index translation

- **MPI**
 - Global operations

- **ARMCI**
 - portable 1-sided communication
 - put, get, locks, etc

- **execution layer**
 - task scheduling
 - load balancing
 - data movement

- **system specific interfaces**
 - LAPI, GM/Myrinet, threads, VIA,..
Installing GA

- GA 5.0 uses autotools (*configure && make && make install*) for building
 - Traditional configure env vars CC, CFLAGS, CPPFLAGS, LIBS, etc
 - Specify the underlying network communication protocol
 - Only required on clusters with a high performance network
 - e.g. Infiniband: *configure --with-openib*
 - Best guess: *configure --enable-autodetect*
 - GA requires MPI for basic start-up and process management
 - MPI is the default, searches for MPI compilers e.g. mpicc, mpif90

- Various make targets
 - make to build GA libraries
 - make install to install libraries
 - make checkprogs to build C/Fortran tests and examples
 - make check MPIEXEC="mpiexec -np 4" to run test suite

- VPATH builds: one source tree, many build trees i.e. configurations
 - tar -xzf ga-5-0-3.tgz; cd ga-5-0-3
 - mkdir bld; cd bld; ./configure; make
Installing GA for Python

- GA requires MPI for basic start-up and process management
 - MPI is the default: `configure`
 - MPI compilers are searched for by default e.g. `mpicc`
- Need to enable shared libraries: `--enable-shared`
- **Build it:** `make && make python`
 - Installs GA libs/headers, runs `setup.py build` and install
- Python bindings always built from top-level source tree
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
 - Downloading, Building GA using `configure && make`
 - 10 Basic GA Commands
 - GA Models for Computation
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAI/N)
GA Basic Operations

- GA programming model is very simple
- Most parallel programs can be written with these basic calls
 - `ga.initialize`, `ga.terminate()`
 - `ga.nnodes()`, `ga.nodeid()`
 - `ga.create(...)`, `ga.destroy(...)`
 - `ga.put(...)`, `ga.get(...)`, `ga.acc(...)`
 - `ga.sync()`
- We cover these and more in the next slides
GA Initialization/Termination

- For Python, there is only `import ga`
- To set maximum limit for GA memory, use `ga.set_memory_limit(limit)`
- For Python, GA termination happens during `atexit()`
Where to Find the Tutorial Code

- From the top level GA source directory
 - ./python/tutorial
- Don’t look at the answers!
 - e.g. matrix.answer.py instead of matrix.py
- Some programs serve as a sample, some as a problem
 - hello.py, hello2.py already work
 - matrix.py, transpose.py require fixing by you
Running First GA Program – Hello World

- Requires MPI
 - Needs a process manager
 - Also certain collective operations

- import ga
 - C's `GA_Initialize()` called
 - C’s `GA_Terminate()` registered with `atexit()`

- Single Program, Multiple Data

```python
# file: hello.py
import mpi4py.MPI # initialize Message Passing Interface
import ga # initialize Global Arrays
print "Hello World!"
```

To Run:
```
mpiexec -np 4 python tutorial/hello.py
```
Parallel Environment - Process Information

- **Parallel Environment:**
 - how many processes are working together (*size*)
 - what their IDs are (ranges from 0 to *size*-1)
- To return the process ID of the current process:
 - `nodeid = ga.nodeid()`
- To determine the number of computing processes:
 - `nnodes = ga.nnodes()`
file: hello.py
import mpi4py.MPI # initialize Message Passing Interface
import ga # initialize Global Arrays
print “Hello from %s of %s” % (ga.nodeid(),ga.nnodes())

To Run:
mpiexec -np 4 python tutorial/hello2.py
GA Data Types

► C/Python Data types
 ■ C_INT - int
 ■ C_LONG - long
 ■ C_LONGLONG - long long
 ■ C_FLOAT - float
 ■ C_DBL - double
 ■ C_SCPL - single complex
 ■ C_DCPL - double complex

► Fortran Data types (don’t use these for Python)
 ■ F_INT - integer (4/8 bytes)
 ■ F_REAL - real
 ■ F_DBL - double precision
 ■ F_SCPL - single complex
 ■ F_DCPL - double complex
Creating Arrays

To create an array with a regular distribution:

```python
g_a = ga.create(type, dims, name="", chunk=None, pgroup=-1)
```

- `string name` - a unique character string [input]
- `integer type` - GA data type [input]
- `integer dims()` - array dimensions [input]
- `integer chunk()` - minimum size that dimensions should be chunked into [input]
- `integer g_a` - array handle for future references [output]

```
g_a = ga.create(ga.C_DBL, [5000,5000], "Array_A")
if not g_a:
    ga.error("Could not create global array A", g_a)
```
Creating Arrays with Irregular Distributions

To create an array with an irregular distribution:

```python
g_a = ga.create_irreg(int gtype, dims, block, map, name="", pgroup=-1)
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>string</td>
<td>name</td>
<td>- a unique character string</td>
<td></td>
</tr>
<tr>
<td>integer</td>
<td>type</td>
<td>- GA datatype</td>
<td></td>
</tr>
<tr>
<td>integer</td>
<td>dims</td>
<td>- array dimensions</td>
<td></td>
</tr>
<tr>
<td>integer</td>
<td>nbblock(*)</td>
<td>- no. of blocks each dimension is divided into</td>
<td></td>
</tr>
<tr>
<td>integer</td>
<td>map(*)</td>
<td>- starting index for each block</td>
<td></td>
</tr>
<tr>
<td>integer</td>
<td>g_a</td>
<td>- integer handle for future references</td>
<td></td>
</tr>
</tbody>
</table>
Irregular Distributions Explained

Example of irregular distribution:
- The distribution is specified as a Cartesian product of distributions for each dimension. The array indices start at 0.

- The figure demonstrates distribution of an 8x10 array on 6 (or more) processors
 - `block=[3,2]`
 - `map = [0,2,6,0,5]; len(map) = 5`

- The distribution is nonuniform because, P1 and P4 get 20 elements each and processors P0, P2, P3, and P5 only 10 elements each.

```python
block = [3,2]
map = [0,2,6,0,5]
g_a = ga.create_irreg(ga.C_DBL, [8,10], "Array A", block, map)
if not g_a:
    ga.error("Could not create global array A", g_a)
```
Duplicating and Destroying Arrays

To *duplicate* an array:

```python
g_b = ga.duplicate(g_a, name="")
```

Creates a new array by applying all properties of given array to the new array.

Global arrays can be *destroyed* by calling the function:

```python
g.a.destroy(g_a)
```

```python
g_a = ga_create(ga.C_INT, [200,300])
g_b = ga_duplicate(g_a)
g.a.destroy(g_a)
```
Put/Get

Put copies data from a local array to a global array section:

```python
ga.put(g_a, buffer, lo=None, hi=None)
```

- `integer` `g_a` global array handle [input]
- `integer` `lo(),hi()` limits on data block to be moved [input]
- `double/complex/integer` `buf` local buffer [input]

Get copies data from a global array section to a local array:

```python
buffer = ga.get(g_a, lo=None, hi=None, buffer=None)
```

- `integer` `g_a` global array handle [input]
- `integer` `lo(),hi()` limits on data block to be moved [input]
- `double/complex/integer` `buf` local buffer [output]
Example of *put* operation:
- Local buffer must be either 1D contiguous or same shape as lo/hi patch.
- Here: local array sliced to 9x9 patch, put to 18x12 global array.

```python
buf = numpy.arange(15*15).reshape(15,15)
ga.put(g_a, buf[:9,:9], (9,0), (18,9))
```
Sync

- *Sync* is a collective operation
- It acts as a barrier, which synchronizes all the processes and ensures that all the Global Array operations are complete at the call
- `ga.sync()`
Locality Information

Discover array elements held by each processor

\[\text{lo, hi} = \text{ga.distribution}(g_a, \text{proc}=-1) \]

- `integer g_a` array handle [input]
- `integer proc` processor ID [input]
- `integer lo(ndim)` lower index [output]
- `integer hi(ndim)` upper index [output]

Follows Python half-open convention – lo is inclusive, hi is exclusive

```python
def print_distribution(g_a):
    for i in range(ga.nnodes()):
        print "Printing g\_a info for processor", i
        lo, hi = ga.distribution(g\_a, i)
        print "\%s lo=\%s hi=\%s" % (i, lo, hi)
```
Example: 1-D Transpose (transp1D.py)

You now know enough for your first real application!
Example: Matrix Multiply (matrix.py)

global arrays representing matrices

local buffers on the processor

You now know enough for your second *real* application!
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
 - Downloading and Building GA using `configure && make`
 - 10 Basic GA Commands
 - GA Models for Computation
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAiN)
GA Model of Computations: Get/Put

- Shared memory view for distributed dense arrays
- Get-Local/Compute/Put-Global model of computation
- MPI-Compatible
- Data locality and granularity control similar to message passing model
Access-Local/Compute/Release-Global model of computation

No communication!

Be aware that other processes may be trying to get/put the same data
Data Locality in GA

What data does a processor own?

\[\text{lo, hi} = \text{ga.distribution}(g_a, \text{iproc=-1})\]

Where is the data?

\[\text{data} = \text{ga.access}(g_a, \text{lo=None, hi=None, proc=-1})\]

Use this information to organize calculation so that maximum use is made of locally held data
Data Locality in GA (cont.)

- Global Arrays support abstraction of a distributed array object
- Object is represented by an integer handle
- A process can access its portion of the data in the global array
- To do this, the following steps need to be taken:
 - Find the distribution of an array, i.e. which part of the data the calling process owns
 - Access the data
 - Operate on the data: read/write
 - Release the access to the data
Locality Information

To determine the process ID that owns the element defined by the array subscripts:

```
proc = ga.locate(g_a, subscript)
```

<table>
<thead>
<tr>
<th>integer g_a</th>
<th>array handle</th>
<th>[input]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integer subscript(ndim)</td>
<td>element subscript</td>
<td>[input]</td>
</tr>
<tr>
<td>integer owner</td>
<td>process id</td>
<td>[output]</td>
</tr>
</tbody>
</table>

```
owner=5
```

0 4 8
1 5 9
2 6 10
3 7 11
Locality Information (cont.)

To return a list of process IDs that own the patch:

```python
map, procs = ga.locate_region(g_a, lo, hi)
```

<table>
<thead>
<tr>
<th>integer</th>
<th>np</th>
<th>number of processors that own a portion of block</th>
<th>output</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>g_a</td>
<td>global array handle</td>
<td>input</td>
</tr>
<tr>
<td>integer</td>
<td>ndim</td>
<td>number of dimensions of the global array</td>
<td>input</td>
</tr>
<tr>
<td>integer</td>
<td>lo(ndim)</td>
<td>array of starting indices for array section</td>
<td>input</td>
</tr>
<tr>
<td>integer</td>
<td>hi(ndim)</td>
<td>array of ending indices for array section</td>
<td>input</td>
</tr>
<tr>
<td>integer</td>
<td>map(2ndim,)</td>
<td>array with mapping information</td>
<td>output</td>
</tr>
<tr>
<td>integer</td>
<td>procs(np)</td>
<td>list of processes that own a part of array section</td>
<td>output</td>
</tr>
</tbody>
</table>

```python
procs = {0, 1, 2, 4, 5, 6}
map = {lo_01, lo_02, hi_01, hi_02, lo_11, lo_12, hi_11, hi_12, lo_21, lo_22, hi_21, hi_22, lo_41, lo_42, hi_41, hi_42, lo_51, lo_52, hi_51, hi_52, lo_61, lo_62, hi_61, hi_62}
```
Access and Release

To provide direct access to local data in the specified patch of the array owned by the calling process:

\[\text{buffer} = \text{ga.access}(g_a, \text{lo}=\text{None}, \text{hi}=\text{None}, \text{proc}=-1) \]

Processes can access the local position of the global array:

- Process “0” can access the specified patch of its local position of the array
- Avoids memory copy
- Defaults to entire local array
- **Returns None if no local data**

If not modified:

\[\text{ga.release}(g_a, \text{lo}=\text{None}, \text{hi}=\text{None}) \]

If modified:

\[\text{ga.release_update}(g_a, \text{lo}=\text{None}, \text{hi}=\text{None}) \]
Example: 1-D Transpose (transp1D.py)

Can you do this again but use ga.access() somewhere?
Example: Matrix Multiply (matrix.py)

-Global arrays representing matrices

Can you do this again but use ga.access() somewhere?
Atomic Accumulate

Accumulate combines the data from the local array with data in the global array section:

\[\text{ga.acc}(g_a, \text{buffer}, \text{lo}=\text{None}, \text{hi}=\text{None}, \text{alpha}=\text{None}) \]

- integer \(g_a \) array handle [input]
- integer \(\text{lo}(), \text{hi}() \) limits on data block to be moved [input]
- double/complex/int \(\text{buffer} \) local buffer [input]
- double/complex/int \(\text{alpha} \) arbitrary scale factor [input]

\[g_a(i,j) = g_a(i,j) + \alpha \times \text{buf}(k,l) \]
buffer = ga.brcdst(buffer, root)
Sends vector from root process to all other processes.

buffer = ga.gop(x, op)
Combines buffers from all processes using “op”.
Op can be “+”, “*”, “max”, “min”, “absmax”, “absmin”
Alternatively:
 ga.gop_add(...), ga.gop_multiply(...), ga.gop_max(...),
 ga.gop_min(...), ga.gop_absmax(...), ga.gop_absmin(...)
Basic Array Operations

- **Whole Arrays or Array Patches:**
 - To set all the elements in the array to zero:
    ```python
g.a.zero(g_a, lo=None, hi=None)
```
 - To assign a single value to all the elements in array:
    ```python
g.a.fill(g_a, val, lo=None, hi=None)
```
 - To scale all the elements in the array by factor `val`:
    ```python
g.a.scale(g_a, val, lo=None, hi=None)
```
Example: Calculating PI (pi.py)

You know enough of the API to try the next example!
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAIaN)
Copy

- **Whole Arrays:**
 - **To copy data between two arrays:**
 - `ga.copy(g_a, g_b)`
 - Arrays must be same size and dimension
 - Distribution may be different
 - See “copy.py” for sample

```
# fill GA's with values
g_a = ga.create(ga.C_INT, [4, 25], chunk=[4, -1])
g_b = ga.create(ga.C_INT, [4, 25], chunk=[-1, 25])
g_a[0:4, 0:25] = [0, 1, 2, 3, 4, 5, 6, 7, 8]
g_b[0:4, 0:25] = [0, 1, 2, 3, 4, 5, 6, 7, 8]
```

Global Arrays `g_a` and `g_b` distributed on a 3x3 process grid
Patch Operations:

- The copy patch operation:

  ```python
  ga.copy(g_a, g_b, 
          alo=None, ahi=None, 
          blo=None, bhi=None, trans=False)
  ```

- Number of elements must match

![Diagram showing the copy operation between two matrices](image)
Scatter/Gather

- **Scatter** puts array elements into a global array:

  ```python
  ga.scatter(g_a, values, subsarray)
  ```

- **Scatter accumulate** puts array elements into a global array:

  ```python
  ga.scatter_acc(g_a, values, subsarray, alpha=None)
  ```

- **Gather** gets the array elements from a global array into a local array:

  ```python
  values = ga.gather(g_a, subsarray, values=None)
  ```

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_a</td>
<td>array handle</td>
<td>integer [input]</td>
</tr>
<tr>
<td>values</td>
<td>array of values</td>
<td>double/complex/int [input/output]</td>
</tr>
<tr>
<td>n</td>
<td>number of values</td>
<td>integer [input]</td>
</tr>
<tr>
<td>subsarray</td>
<td>coordinates within global array</td>
<td>integer [input]</td>
</tr>
</tbody>
</table>

“values” is a 1D vector.
“subsarray” can be either 2D of shape=(N,ndim) or flattened 1D version thereof.
Example of *scatter* operation:

- Scatter the 5 elements into a 10x10 global array
 - Element 1 \(v[0] = 5 \)
 \[\begin{array}{ll}
 \text{subsArray}[0][0] &= 2 \\
 \text{subsArray}[0][1] &= 3 \\
 \end{array} \]
 - Element 2 \(v[1] = 3 \)
 \[\begin{array}{ll}
 \text{subsArray}[1][0] &= 3 \\
 \text{subsArray}[1][1] &= 4 \\
 \end{array} \]
 - Element 3 \(v[2] = 8 \)
 \[\begin{array}{ll}
 \text{subsArray}[2][0] &= 8 \\
 \text{subsArray}[2][1] &= 5 \\
 \end{array} \]
 - Element 4 \(v[3] = 7 \)
 \[\begin{array}{ll}
 \text{subsArray}[3][0] &= 3 \\
 \text{subsArray}[3][1] &= 7 \\
 \end{array} \]
 - Element 5 \(v[4] = 2 \)
 \[\begin{array}{ll}
 \text{subsArray}[4][0] &= 6 \\
 \text{subsArray}[4][1] &= 3 \\
 \end{array} \]

- After the *scatter* operation, the five elements would be scattered into the global array as shown in the figure.
Read and Increment

- \textit{Read_inc} remotely updates a particular element in an integer global array and returns the original value:
 - \texttt{val = ga.read_inc(g_a, subscript, inc=1)}
 - Applies to integer arrays only
 - Can be used as a global counter for dynamic load balancing

integer \ g_a \quad [\text{input}]
integer \ \text{subscript(ndim), inc} \quad [\text{input}]

Create task counter
\texttt{g_counter = ga.create(ga.C_INT, [1])}
\texttt{ga.zero(g_counter)}
:
\texttt{itask = ga.read_inc(g_counter, [0])}
... Translate itask into task ...

\textbf{NGA_Read_inc}
(Read and Increment)

\textbf{Global Array}

\textbf{Global Lock}
(access to data is serialized)
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAIN)
Non-blocking Operations

The non-blocking APIs are derived from the blocking interface by adding a handle argument that identifies an instance of the non-blocking request.

- handle = ga.nbput(g_a, buffer, lo=None, hi=None)
- buffer, handle = ga.nbget(g_a, lo=None, hi=None, numpy.ndarray buffer=None)
- handle = ga.nbacc(g_a, buffer, lo=None, hi=None, alpha=None)
- ga.nbwait(handle)
Matrix Multiply (a better version)

more scalable!
(less memory, higher parallelism)

dgemm
local buffers on the processor

atomic accumulate
get
SRUMMA Matrix Multiplication

\[C = A \cdot B \]

Computation

Comm. (Overlap)

Issue NB Get A and B blocks

do (until last chunk)

issue NB Get to the next blocks

wait for previous issued call

compute A*B (sequential dgemm)

NB atomic accumulate into “C” matrix

done

Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication
 - latency hiding
- exploits data locality
- patch matrix multiplication (easy to use)
- dynamic load balancing

patch matrix multiplication

Pacific Northwest
NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965
SRUMMA Matrix Multiplication: Improvement over PBLAS/ScaLAPACK

Parallel Matrix Multiplication on the HP/Quadrics Cluster at PNNL
Matrix size: 40000x40000
Efficiency 92.9% w.r.t. serial algorithm and 88.2% w.r.t. machine peak on 1849 CPUs

- SRUMMA
- PBLAS/ScaLAPACK pdgemm
- Theoretical Peak
- Perfect Scaling
Example: SRUMMA Matrix Multiplication

Alright, give the next example a try: srumma.py
Example: SRUMMA Using `ga.read_inc()`

Can you modify `srumpma.py` to use `ga.read_inc()`?

Advantages:
- Minimum memory
- Highly parallel
- Overlaps computation and communication
 - latency hiding
- Exploits data locality
- Patch matrix multiplication (easy to use)
- Dynamic load balancing

Issue NB Get A and B blocks
do (until last chunk)
- Issue NB Get to the next blocks
- Wait for previous issued call
- Compute A*B (sequential dgemm)
- NB atomic accumulate into "C" matrix

done
Cluster Information

Example:
- 2 nodes with 4 processors each. Say, there are 7 processes created.
 - `ga.cluster_nnodes` returns 2
 - `ga.cluster_nodeid` returns 0 or 1
 - `ga.cluster_nprocs(inode)` returns 4 or 3
 - `ga.cluster_procid(inode,iproc)` returns a processor ID

![Diagram of cluster nodes and processors]
Cluster Information (cont.)

- To return the total number of nodes that the program is running on:
 - `nnodes = ga.cluster_nnodes()`

- To return the node ID of the process:
 - `nodeid = ga.cluster_nodeid()`
To return the number of processors available on node inode:

\[
\text{nprocs} = \text{ga.cluster_nprocs(inode)}
\]

To return the processor ID associated with node inode and the local processor ID iproc:

\[
\text{procid} = \text{ga.cluster_procid(inode, iproc)}
\]

<table>
<thead>
<tr>
<th>0(0)</th>
<th>1(1)</th>
<th>4(0)</th>
<th>5(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2(2)</td>
<td>3(3)</td>
<td>6(2)</td>
<td>7(3)</td>
</tr>
</tbody>
</table>
if ga.nodeid() == 8:
 ga.access(g_a, proc=10)
Example: access.py

Using the cluster functions, have the master (zeroth) process on each cluster to sum the values of a global array.

Example:
- 2 nodes with 4 processors each. Say, there are 7 processes created.
 - `ga.cluster_nnodes` returns 2
 - `ga.cluster_nodeid` returns 0 or 1
 - `ga.cluster_nprocs(inode)` returns 4 or 3
 - `ga.cluster_procid(inode,iproc)` returns a processor ID
Processor Groups

world group

group A

group B

group C
Processor Groups

- To create a new processor group:
  ```python
  pgroup = ga.pgroup_create(list)
  ```

- To assign a processor groups:
  ```python
  g_a = ga.create(type, dims, name, chunk, pgroup=-1)
  ```

- To set the default processor group
  ```python
  ga.pgroup_set_default(p_handle)
  ```

- To access information about the processor group:
  ```python
  nnodes = ga.pgroup_nnodes(p_handle)
  nodeid = ga.pgroup_nodeid(p_handle)
  ```

<table>
<thead>
<tr>
<th>integer</th>
<th>g_a</th>
<th>- global array handle</th>
<th>[input]</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>p_handle</td>
<td>- processor group handle</td>
<td>[output]</td>
</tr>
<tr>
<td>integer</td>
<td>list(size)</td>
<td>- list of processor IDs in group</td>
<td>[input]</td>
</tr>
<tr>
<td>integer</td>
<td>size</td>
<td>- number of processors in group</td>
<td>[input]</td>
</tr>
</tbody>
</table>
Processor Groups (cont.)

To determine the handle for a standard group at any point in the program:

- `p_handle = ga.pgroup_get_default()`
- `p_handle = ga.pgroup_get_mirror()`
- `p_handle = ga.pgroup_get_world()`
Default Processor Group

```python
# create subgroup p_a, run a parallel task
p_a = ga.pgroup_create(list)
ga.pgroup_set_default(p_a)
parallel_task()
ga.pgroup_set_default(ga.pgroup_get_world())

def parallel_task():
    p_b = ga.pgroup_create(new_list)
ga.pgroup_set_default(p_b)
parallel_subtask()
```

Take a shot at groups.py!
Creating Arrays with Ghost Cells

To create arrays with ghost cells:

- For arrays with regular distribution:
  ```python
g_a = ga.create_ghosts(type, dims, width, name="", chunk=None, pgroup=-1)
```

- For arrays with irregular distribution:
  ```python
g_a = ga.create_ghosts_irreg(type, dims, width, block, map, name="", pgroup=-1)
```

integer width(ndim) - iterable of ghost cell widths [input]
Ghost Cells

normal global array

Operations:

- ga.create_ghosts
- ga.update_ghosts
- ga.access_ghosts
- ga.nbget_ghost_dir

global array with ghost cells

- creates array with ghosts cells
- updates with data from adjacent processors
- provides access to “local” ghost cell elements
- nonblocking call to update ghosts cells
Ghost Cell Update

Automatically update ghost cells with appropriate data from neighboring processors. A multiprotocol implementation has been used to optimize the update operation to match platform characteristics.
Periodic Interfaces

- Periodic interfaces to the one-sided operations have been added to Global Arrays in version 3.1 to support computational fluid dynamics problems on multidimensional grids.
- They provide an index translation layer that allows users to request blocks using put, get, and accumulate operations that possibly extend beyond the boundaries of a global array.
- The references that are outside of the boundaries are wrapped around inside the global array.
- Current version of GA supports three periodic operations:
 - periodic get
 - periodic put
 - periodic acc

```
  ga.periodic_get(g_a, lo=None, hi=None, buf=None)
```
Periodic Get/Put/Accumulate

- \(\text{ndarray} = \text{ga.periodic_get}(g_a, \text{lo=None, hi=None, buffer=None}) \)
- \(\text{ga.periodic_put}(g_a, \text{buffer, lo=None, hi=None}) \)
- \(\text{ga.periodic_acc}(g_a, \text{buffer, lo=None, hi=None, alpha=None}) \)
Lock and Mutex

- *Lock* works together with *mutex*.
- Simple synchronization mechanism to protect a critical section
- To enter a critical section, typically, one needs to:
 - Create mutexes
 - Lock on a mutex
 - Do the exclusive operation in the critical section
 - Unlock the mutex
 - Destroy mutexes
- The *create mutex* function is:
  ```
  bool ga.create_mutexes(number)
  ```
 - number - number of mutexes in mutex array [input]
Lock and Mutex (cont.)

Lock

Unlock
The `destroy mutex` functions are:

- `bool ga.destroy_mutexes()`

The `lock` and `unlock` functions are:

- `ga.lock(mutex)`
- `ga.unlock(mutex)`

`integer mutex [input] ! mutex id`
Fence

- *Fence* blocks the calling process until all the data transfers corresponding to the Global Array operations initiated by this process complete.

- For example, since `ga.put()` might return before the data reaches final destination, `ga.init_fence()` and `ga.fence()` allow process to wait until the data transfer is fully completed.

  ```python
ga_init_fence()
ga_put(g_a, ...)
ga_fence()
```

- The *initialize fence* function is:
 - `ga.init_fence()`

- The *fence* function is:
 - `ga.fence()`
Synchronization Control in Collective Operations

To eliminate redundant synchronization points:

```python
ga.mask_sync(prior_sync_mask, post_sync_mask)
```

- `logical first` - mask (0/1) for prior internal synchronization [input]
- `logical last` - mask (0/1) for post internal synchronization [input]

```
# Example usage

# Mask synchronization
ga.mask_sync(False, True)

# Duplicate and sync
ga.duplicate(g_a, g_b)

# Zero and sync
ga.zero(g_b)
```
Linear Algebra

- To add two arrays:

  ```python
ga.add(g_a, g_b, g_c, alpha=None, beta=None,
       alo=None, ahi=None, blo=None, bhi=None,
       clo=None, chi=None)
```

- To multiply arrays:

  ```python
gemm(ta, tb, m, n, k, alpha, g_a, g_b, beta, g_c)
```

<table>
<thead>
<tr>
<th>Type</th>
<th>Parameter</th>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>integer</td>
<td>g_a, g_b, g_c</td>
<td>- array handles</td>
<td>[input]</td>
</tr>
<tr>
<td>float/complex/int</td>
<td>alpha</td>
<td>- scale factor</td>
<td>[input]</td>
</tr>
<tr>
<td>float/complex/int</td>
<td>beta</td>
<td>- scale factor</td>
<td>[input]</td>
</tr>
<tr>
<td>bool</td>
<td>transa, transb</td>
<td></td>
<td>[input]</td>
</tr>
<tr>
<td>integer</td>
<td>m, n, k</td>
<td></td>
<td>[input]</td>
</tr>
</tbody>
</table>
To compute the element-wise dot product of two arrays:
- Python has only one function: `ga.dot(g_a, g_b)`
- This is not NumPy’s dot i.e. not matrix multiply

```python
ga.dot(g_a, g_b, 
    alo=None, ahi=None, 
    blo=None, bhi=None, 
    ta=False, tb=False)
```
Linear Algebra (cont.)

- To symmetrize a matrix:
 \[\text{ga.symmetrize(g_a)} \]
- To transpose a matrix:
 \[\text{ga.transpose(g_a, g_b)} \]
To perform matrix multiplication:

```c
ga.matmul_patch(transa, transb,
    alpha, beta,
    g_a, ailo, aihi, ajlo, ajhi,
    g_b, bilo, bihi, bjlo, bjhi,
    g_c, cilo, cihi, cjlo, cjhi)
```

- integer `g_a`, `ailo`, `aihi`, `ajlo`, `ajhi` - patch of `g_a` [input]
- integer `g_b`, `bilo`, `bihi`, `bjlo`, `bjhi` - patch of `g_b` [input]
- integer `g_c`, `cilo`, `cihi`, `cjlo`, `cjhi` - patch of `g_c` [input]
- dbl prec/comp `alpha`, `beta` - scale factors [input]
- character*1 `transa`, `transb` - transpose flags [input]
Block-Cyclic Data Distributions

Normal Data Distribution

Block-Cyclic Data Distribution
Simple Distribution

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>13</td>
<td>19</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>27</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>16</td>
<td>22</td>
<td>28</td>
<td>34</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>17</td>
<td>23</td>
<td>29</td>
<td>35</td>
</tr>
</tbody>
</table>

Scalapack Distribution

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Block-Cyclic Data (cont.)

- Most operations work exactly the same, data distribution is transparent to the user
- Some operations (matrix multiplication, non-blocking put, get) not implemented
- Additional operations added to provide access to data associated with particular sub-blocks
- You need to use the new interface for creating Global Arrays to get create block-cyclic data distributions
New Interface for Creating Arrays

```python
handle = ga.create_handle()
ga.set_data(g_a, dims, type)
ga.set_array_name(g_a, name)
ga.set_chunk(g_a, chunk)
ga.set_irreg_distr(g_a, map, nblock)
ga.set_ghosts(g_a, width)
ga.set_block_cyclic(g_a, dims)
ga.set_block_cyclic_proc_grid(g_a, dims, proc_grid)
bool ga.allocate(int g_a)
```
Creating Block-Cyclic Arrays

- Must use new API for creating Global Arrays

```python
ga.set_block_cyclic(g_a, dims)
```

```python
ga.set_block_cyclic Proc_grid(g_a, block, proc_grid)
```

- `integer dims[]` - dimensions of blocks
- `integer proc_grid[]` - dimensions of processor grid (note that product of all `proc_grid` dimensions must equal total number of processors)
Block-Cyclic Methods

- Methods for accessing data of individual blocks

```python
num_blocks, block_dims = ga.get_block_info(g_a)
blocks = ga.total_blocks(g_a)
ndarray = ga.access_block_segment(g_a, iproc)
ndarray = ga.access_block(g_a, idx)
ndarray = ga.access_block_grid(g_a, subscript)
```

- integer length - total size of blocks held on processor
- integer idx - index of block in array (for simple block-cyclic distribution)
- integer subscript[] - location of block in block grid (for Scalapack distribution)
Interfaces to Third Party Software Packages

- **Scalapack**
 - Solve a system of linear equations
 - Compute the inverse of a double precision matrix
Example: ufunc.py

Can you use `ga.access()` to generically reimplement a distributed NumPy unary ufunc?
Outline of the Tutorial

- Parallel Programming Models
- Overview of the Global Arrays Programming Model
- Intermediate GA Programming Concepts and Samples
- Advanced GA Programming Concepts and Samples
- Global Arrays in NumPy (GAI\textsc{N})
 - Overview and Using GAI\textsc{N}
 - Differences with NumPy
 - Advanced GAI\textsc{N} and GA/GAI\textsc{N} interoperability
Overview of Global Arrays in NumPy (GAiN)

- All documented NumPy functions are collective
 - GAiN programs run in SPMD fashion
- Not all arrays should be distributed
 - GAiN operations should allow mixed NumPy/GAiN inputs
- Reuse as much of NumPy as possible (obviously)
- Distributed nature of arrays should be transparent to user
- Use owner-computes rule to attempt data locality optimizations
GAiN is Not Complete (yet)

 ► What’s finished:
 ■ Ufuncs (all)
 ■ ndarray
 ■ flatiter
 ■ *numpy dtypes are reused!*
 ■ Various array creation and other functions:
 ● zeros, zeros_like, ones, ones_like, empty, empty_like
 ● eye, identity, fromfunction, arange, linspace, logspace
 ● dot, diag, clip, asarray

► Everything else doesn’t exist
How to Use GAiN

Change one line in your script:
import numpy
import ga.gain as numpy

Run using the MPI process manager:
$ mpiexec -np 4 python script.py

Go ahead and write something using NumPy! Do you have an application already on your computer? Try to use GAiN as shown above.
GA/GAiN Interoperability

- `gain.from_ga(g_a)`
 - Won’t `ga.destroy(g_a)` when garbage collected
 - Allows custom data distributions
 - Block and block cyclic not currently supported by GAiN
Additional Examples to Try

1. Write a NumPy code, run it serially, then convert it to use GAiN.
2. Use process groups with GAiN.
3. Use process groups and ga.read_inc() with GAiN.
4. Is GAiN missing something you need?? WRITE IT.

This is it, folks! Thank you!!

jeff.daily@pnnl.gov
hpctools@googlegroups.com
http://www.emsl.pnl.gov/docs/global/