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Abstract—Statsmodels is a library for statistical and econometric analysis in
Python. This paper discusses the current relationship between statistics and
Python and open source more generally, outlining how the statsmodels package
fills a gap in this relationship. An overview of statsmodels is provided, including
a discussion of the overarching design and philosophy, what can be found in the
package, and some usage examples. The paper concludes with a look at what
the future holds.
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Introduction

Statsmodels (http://statsmodels.sourceforge.net/) is a library
for statistical and econometric analysis in Python1. Its intended
audience is both theoretical and applied statisticians and
econometricians as well as Python users and developers across
disciplines who use statistical models. Users of R, Stata, SAS,
SPSS, NLOGIT, GAUSS or MATLAB for statistics, financial
econometrics, or econometrics who would rather work in
Python for all its benefits may find statsmodels a useful
addition to their toolbox. This paper introduces statsmodels
and is aimed at the researcher who has some prior experience
with Python, NumPy/SciPy [SciPy]2.

On a historical note, statsmodels was started by Jonathan
Taylor, a statistician now at Stanford, as part of SciPy under
the name models. Eventually, models was removed from SciPy
and became part of the NIPY neuroimaging project [NIPY] in
order to mature. Improving the models code was later accepted
as a SciPy-focused project for the Google Summer of Code
2009 and again in 2010. It is currently distributed as a SciKit,
or add-on package for SciPy.

The current main developers of statsmodels are trained
as economists with a background in econometrics. As such,
much of the development over the last year has focused on
econometric applications. However, the design of statsmodels
follows a consistent pattern to make it user-friendly and
easily extensible by developers from any discipline. New
contributions and ongoing work are making the code more
useful for common statistical modeling needs. We hope that
continued efforts will result in a package useful for all types
of statistical modeling.
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The State of the Union: Open Source and Statistics

Currently R is the open source language of choice for ap-
plied statistics. In applied econometrics, proprietary software
pacakges such as Gauss, MATLAB, Stata, SAS, and NLOGIT
remain the most popular and are taught in most graduate
programs. However, there is a growing call for the use of
open source software in economic research due in large part
to its reliability, transparency, and the paradigm it offers
for workflow and innovation [YaltaYalta], [YaltaLucchetti].
In particular R is increasing in popularity as evidenced by
the recent textbooks by Cryer and Chan (2008), Kleiber and
Zeileis (2008), and Vinod (2008). Gretl is another notable open
source alternative for econometrics [Gretl].

However, there are those who would like to see Python
become the language of choice for economic research and
applied econometrics. Choirat and Seri’s “Econometrics with
Python” is the first publication of which we are aware that
openly advocates the use of Python as the language of choice
for econometricians [ChoiratSeri]. Bilina and Lawford express
similar views [BilinaLawford]. Further, John Stachurski has
written a Python-based textbook, Economic Dynamics: Theory
and Computation [Stachurski], and Alan Isaac’s “Simulating
Evolutionary Games: a Python-Based Introduction” showcases
Python’s abilities for implementing agent-based economic
models [Isaac].

In depth arguments for the choice of Python are beyond the
scope of this paper; however, Python is well known for its sim-
ple syntax, gentle learning curve, and large standard library.
Beyond this, it is a language for much more than statistics
and can be the one toolbox for researchers across discplines.
A few examples of statistics-related packages that are outside
of the main numpy/scipy code are packages for Markov Chain
Monte Carlo and Bayesian statistics [PyMC], machine learning
and multivariate pattern analysis [scikits-learn], [PyMVPA],
neuroimaging [NIPY] and neuroscience time series [NITIME],
visualization [Matplotlib], [Enthought], and efficient handling
of large datasets [PyTables].

We hope that statsmodels too can become an integral a
part of the Scientific Python community and serve as a
step in the direction of Python becoming a serious open
source language for statistics. Towards this end, others are
working on an R-like formula framework to help users specify
and manipulate models [charlton], and packages like pandas
[pandas] (discussed in these proceedings) and larry [larry] are
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providing flexible data structures and routines for data analysis
currently lacking in NumPy.

Statsmodels: Development and Design

It should not be the case that different conclusions can be
had from the same data depending on the choice of statistical
software or its version; however, this is precisely what Altman
and MacDonald (2003) find [AltmanMcDonald]. Given the
importance of numerical accuracy and replicablity of research
and the multitude of software choices for statistical analysis,
the development of statsmodels follows a process to help
ensure accurate and transparent results. This process is known
as Test-Driven Development (TDD). In its strictest form, TDD
means that tests are written before the functionality which
it is supposed to test. While we do not often take the strict
approach, there are several layers in our development process
that ensure that our results are correct versus existing software
(often R, SAS, or Stata). Any deviations from results in other
software are noted in the test suite.

First, we employ a distributed version control system in
which each developer has his own copy of the code, a
branch, to make changes outside of the main codebase. Once
a model is specified, early changes, such as working out the
best API or bug hunting, take place in the main branch’s,
or trunk’s, sandbox directory so that they can be tried out
by users and developers who follow the trunk code. Tests
are then written with results taken from another statistical
package or Monte Carlo simulation when it is not possible
to obtain results from elsewhere. After the tests are written,
the developer asks for a code review on our mailing list
(http://groups.google.ca/group/pystatsmodels). When all is set-
tled, the code becomes part of the main codebase. Periodically,
we release the software in the trunk for those who just want
to download a tarball or install from PyPI, using setuptools’
easy_install. This workflow, while not foolproof, helps make
sure our results are and remain correct. If they are not, we
are able to know why and document discrepancies resulting
in the utmost transparency for end users. And if all else fails,
looking at the source code is trivial to do (and encouraged!).

The design of the package itself is straightforward. The main
idea behind the design is that a model is itself an object to
be used for data reduction. Data can be both endogenous and
exogenous to a model, and these constituent parts are related
to each other through statistical theory. This statistical rela-
tionship is usually justified by an appeal to discipline-specific
theory. Note that in place of endogenous and exogenous,
one could substitute the terms dependent and independent
variables, regressand and regressors, response and explanatory
variables, etc., respectively, as you prefer. We maintain the
endogenous-exogenous terminology throughout the package,
however.

With this in mind, we have a base class, Model, that is
intended to be a template for parametric models. It has two
main attributes endog and exog3 and placeholders for fit and
predict methods. LikelihoodModel is a subclass of Model that
is the workhorse for the regression models. All fit methods
are expected to return some results class. Towards this end,

we also have a base class Results and LikelihoodModelResults
which inherits from Results. The result objects have attributes
and methods that contain common post-estimation results and
statistical tests. Further, these are computed lazily, meaning
that they are not computed until the user asks for them so that
those who are only interested in, say, the fitted parameters
are not slowed by computation of extraneous results. Every
effort is made to ensure that the constructors of each sublcass
of Model, the call signatures of its methods, and the post-
estimation results are consistent throughout the package.

Package Overview

Currently, we have five modules in the main codebase that
contain statistical models. These are regression (least squares
regression models), glm (generalized linear models), rlm (ro-
bust linear models), discretemod (discrete choice models), and
contrast (contrast analysis). Regression contains generalized
least squares (GLS), weighted least squares (WLS), and or-
dinary least squares (OLS). Glm contains generalized linear
models with support for six common exponential family dis-
tributions and at least ten standard link functions. Rlm supports
M-estimator type robust linear models with support for eight
norms. Discretemod includes several discrete choice models
such as the Logit, Probit, Multinomial Logit (MNLogit), and
Poisson within a maximum likelihood framework. Contrast
contains helper functions for working with linear contrasts.
There are also tests for heteroskedasticity, autocorrelation, and
a framework for testing hypotheses about linear combinations
of the coefficients.

In addition to the models and the related post-estimation
results and tests, statsmodels includes a number of convenience
classes and functions to help with tasks related to statistical
analysis. These include functions for conveniently viewing
descriptive statistics, a class for creating publication quality
tables, and functions for translating foreign datasets, currently
only Stata’s binary .dta format, to numpy arrays.

The last main part of the package is the datasets. There are
currently fourteen datasets that are either part of the public
domain or used with express consent of the original authors.
These datasets follow a common pattern for ease of use, and
it is trivial to add additional ones. The datasets are used in our
test suite and in examples as illustrated below.

Examples

All of the following examples use the datasets included in
statsmodels. The first example is a basic use case of the OLS
model class to get a feel for the rest of the package, using
Longley’s 1967 dataset [Longley] on the US macro economy.
Note that the Longley data is known to be highly collinear (it
has a condition number of 456,037), and as such it is used
to test accuracy of least squares routines than to examine any
economic theory. First we need to import the package. The
suggested convention for importing statsmodels is
>>> import scikits.statsmodels as sm

Numpy is assumed to be imported as:
>>> import numpy as np

http://groups.google.ca/group/pystatsmodels
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Then we load the example dataset.

>>> longley = sm.datasets.longley

The datasets have several attributes, such as descriptives and
copyright notices, that may be of interest; however, we will
just load the data.

>>> data = longley.load()

Many of the Dataset objects have two attributes that are
helpful for tests and examples -endog and exog- though the
whole dataset is available. We will use them to construct an
OLS model instance. The constructor for OLS is

def __init__(self, endog, exog)

It is currently assumed that the user has cleaned the dataset
and that a constant is included, so we first add a constant and
then instantiate the model.

>>> data.exog = sm.add_constant(data.exog)
>>> longley_model = sm.OLS(data.endog, data.exog)

We are now ready to fit the model, which returns a Regres-
sionResults class.

>>> longley_res = longley_model.fit()
>>> type(longley_res)
<class ’sm.regression.RegressionResults’>

By default, the least squares models use the pseudoinverse to
compute the parameters that solve the objective function.

>>> params = np.dot(np.linalg.pinv(data.exog),
data.endog)

The instance longley_res has several attributes and methods
of interest. The first is the fitted values, commonly β in the
general linear model, Y = Xβ , which is called params in
statsmodels.

>>> longley_res.params
array([ 1.50618723e+01, -3.58191793e-02,

-2.02022980e+00, -1.03322687e+00,
-5.11041057e-02, 1.82915146e+03,
-3.48225863e+06])

Also available are

>>> [_ for _ in dir(longley_res) if not
_.startswith(’_’)]

[’HC0_se’, ’HC1_se’, ’HC2_se’, ’HC3_se’, ’aic’,
’bic’, ’bse’, ’centered_tss’, ’conf_int’,
’cov_params’, ’df_model’, ’df_resid’, ’ess’,
’f_pvalue’, ’f_test’, ’fittedvalues’, ’fvalue’,
’initialize’, ’llf’, ’model’, ’mse_model’,
’mse_resid’, ’mse_total’, ’nobs’, ’norm_resid’,
’normalized_cov_params’, ’params’, ’pvalues’,
’resid’, ’rsquared’, ’rsquared_adj’, ’scale’, ’ssr’,
’summary’, ’t’, ’t_test’, ’uncentered_tss’, ’wresid’]

All of the attributes and methods are well-documented in the
docstring and in our online documentation. See, for instance,
help(longley_res). Note as well that all results objects carry
an attribute model that is a reference to the original model
instance that was fit whether or not it is instantiated before
fitting.

Our second example borrows from Jeff Gill’s Generalized
Linear Models: A Unified Approach [Gill]. We fit a Gen-
eralized Linear Model where the endogenous variable has
a binomial distribution, since the syntax differs somewhat

from the other models. Gill’s data comes from the 1998
STAR program in California, assessing education policy and
outcomes. The endogenous variable here has two columns.
The first specifies the number of students above the national
median score for the math section of the test per school
district. The second column specifies the number of students
below the median. That is, endog is (number of sucesses,
number of failures). The explanatory variables for each district
are measures such as the percentage of low income families,
the percentage of minority students and teachers, the median
teacher salary, the mean years of teacher experience, per-pupil
expenditures, the pupil -teacher ratio, the percentage of student
taking college credit courses, the percentage of charter schools,
the percent of schools open year round, and various interaction
terms. The model can be fit as follows

>>> data = sm.datasets.star98.load()
>>> data.exog = sm.add_constant(data.exog)
>>> glm_bin = sm.GLM(data.endog, data.exog,

family=sm.families.Binomial())

Note that you must specify the distribution family of
the endogenous variable. The available families in scik-
its.statsmodels.families are Binomial, Gamma, Gaussian, In-
verseGaussian, NegativeBinomial, and Poisson.

The above examples also uses the default canonical logit
link for the Binomial family, though to be explicit we could
do the following

>>> links = sm.families.links
>>> glm_bin = sm.GLM(data.endog, data.exog,

family=sm.families.Binomial(link=
links.logit))

We fit the model using iteratively reweighted least squares, but
we must first specify the number of trials for the endogenous
variable for the Binomial model with the endogenous variable
given as (success, failure).

>>> trials = data.endog.sum(axis=1)
>>> bin_results = glm_bin.fit(data_weights=trials)
>>> bin_results.params
array([ -1.68150366e-02, 9.92547661e-03,

-1.87242148e-02, -1.42385609e-02,
2.54487173e-01, 2.40693664e-01,
8.04086739e-02, -1.95216050e+00,
-3.34086475e-01, -1.69022168e-01,
4.91670212e-03, -3.57996435e-03,
-1.40765648e-02, -4.00499176e-03,
-3.90639579e-03, 9.17143006e-02,
4.89898381e-02, 8.04073890e-03,
2.22009503e-04, -2.24924861e-03,
2.95887793e+00])

Since we have fit a GLM with interactions, we might be in-
terested in comparing interquartile differences of the response
between groups. For instance, the interquartile difference be-
tween the percentage of low income households per school
district while holding the other variables constant at their mean
is

>>> means = data.exog.mean(axis=0) # overall means
>>> means25 = means.copy() # copy means
>>> means75 = means.copy()

We can now replace the first column, the percentage of low
income households, with the value at the first quartile using
scipy.stats and likewise for the 75th percentile.
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>>> from scipy.stats import scoreatpercentile as sap
>>> means25[0] = sap(data.exog[:,0], 25)
>>> means75[0] = sap(data.exog[:,0], 75)

And compute the fitted values, which are the inverse of the
link function at the linear predicted values.

>>> lin_resp25 = glm_bin.predict(means25)
>>> lin_resp75 = glm_bin.predict(means75)

Therefore the percentage difference in scores on the standard-
ized math tests for school districts in the 75th percentile of
low income households versus the 25th percentile is

>>> print "%4.2f percent" % ((lin_resp75-
lin_resp25)*100)

-11.88 percent

The next example concerns the testing of joint hypotheses
on coefficients and is inspired by a similar example in Bill
Greene’s Econometric Analysis [Greene]. Consider a simple
static investment function for a macro economy

ln It = β1+β2 lnYt +β3it +β4∆pt +β5t+ εt (1)

In this example, (log) investment, It is a function of the
interest rate, it , inflation, ∆pt , (log) real GDP, Yt , and possibly
follows a linear time trend, t. Economic theory suggests that
the following model may instead be correct

ln It = β1+ lnYt +β3 (it �∆pt)+ εt (2)

In terms of the (1) this implies that β3 +β4 = 0, β2 = 1, and
β5 = 0. This can be implemented in statsmodels using the
macrodata dataset. Assume that endog and exog are given as
in (1)

>>> inv_model = sm.OLS(endog, exog).fit()

Now we need to make linear restrictions in the form of Rβ = q

>>> R = [[0,1,0,0,0],[0,0,1,1,0],[0,0,0,0,1]]
>>> q = [1,0,0]

Rβ = q implies the hypotheses outlined above. We can test the
joint hypothesis using an F test, which returns a ContrastRe-
sults class

>>> Ftest = inv_model.f_test(R,q)
>>> print Ftest
<F test: F=array([[ 194.4428894]]),
p=[[ 1.27044954e-58]], df_denom=197, df_num=3>

Assuming that we have a correctly specified model, given the
high value of the F statistic, the probability that our joint null
hypothesis is true is essentially zero.

As a final example we will demonstrate how the Sim-
pleTable class can be used to generate tables. SimpleTable is
also currently used to generate our regression results summary.
Continuing the example above, one could do

>>> print inv_model.summary(yname="lninv",
xname=["const","lnY","i","dP","t"])

To build a table, we could do:

>>> gdpmean = data.data[’realgdp’].mean()
>>> invmean = data.data[’realinv’].mean()
>>> gdpstd = data.data[’realgdp’].std()
>>> invstd = data.data[’realinv’].std()
>>> mydata = [[gdpmean, gdpstd],[invmean,

invstd]]

>>> myheaders = ["Mean", "Std Dev."]
>>> mystubs = ["Real GDP", "Real Investment"]
>>> tbl = sm.iolib.SimpleTable(mydata,

myheaders, mystubs, title =
"US Macro Data", data_fmts=[’%4.2f’])

>>> print tbl
US Macro Data

================================
Mean Std Dev.

--------------------------------
Real GDP 7221.17 3207.03
Real Investment 1012.86 583.66
--------------------------------

LaTeX output can be generated with something like
>>> fh = open(’./tmp.tex’, ’w’)
>>> fh.write(tbl.as_latex_tabular())
>>> fh.close()

While not all of the functionality of statsmodels is covered in
the above, we hope it offers a good overview of the basic usage
from model to model. Anything not touched on is available
in our documentation and in the examples directory of the
package.

Conclusion and Outlook

Statsmodels is very much still a work in progress, and perhaps
the most exciting part of the project is what is to come. We
currently have a good deal of code in our sandbox that is
being cleaned up, tested, and pushed into the main codebase
as part of the Google Summer of Code 2010. This includes
models for time-series analysis, kernel density estimators and
nonparametric regression, panel or longitudinal data models,
systems of equation models, and information theory and
maximum entropy models.

We hope that the above discussion gives some idea of the
appoach taken by the project and provides a good overview of
what is currently offered. We invite feedback, discussion, or
contributions at any level. If you would like to get involved,
please join us on our mailing list available at http://groups.
google.com/group/pystatsmodels or on the scipy-user list. If
you would like to follow along with the latest development,
the project blog is http://scipystats.blogspots.com and look for
release announcements on the scipy-user list.

All in all, we believe that the future for Python and statistics
looks bright.
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1. The examples reflect the state of the code at the time of writing. The
main model API is relatively stable; however, recent refactoring has changed
the organization of the code. See online documentation for the current usage.

2. Users who wish to learn more about NumPy can do so at http://www.
scipy.org/Tentative_NumPy_Tutorial, http://www.scipy.org/Numpy_Example_
List, or http://mentat.za.net/numpy/intro/intro.html. For those coming from
R or MATLAB, you might find the following helpful: http://mathesaurus.
sourceforge.net/ and http://www.scipy.org/NumPy_for_Matlab_Users

3. The exog attribute is actually optional, given that we are developing
support for (vector) autoregressive processes in which all variables could at
times be thought of as “endogenous”.
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