Statsmodels
Econometric and Statistical Modeling with Python

Skipper Seabold1 Josef Perktold2

1Department of Economics
American University

2CIRANO
University of North Carolina at Chapel Hill

Python for Scientific Computing Conference, 2010
Outline

1 Introduction
 - Statsmodels
 - Open Source and Statistics

2 Statsmodels: the Package
 - Development
 - Design

3 Examples
 - Regression
 - Generalized Linear Model
 - Heteroskedasticity
 - Testing Linear Restrictions
 - Robust Linear Models

4 Outlook and Summary
What is statsmodels?

- A library for statistical and econometric analysis in Python
- Useful for users of R, GAUSS or MATLAB as well as SAS, Stata, SPSS, NLOGIT, gretl, or eViews.
- Statistical, Financial Econometric, and Econometric models
Background and Overview

- Jonathan Taylor → SciPy (models) → NIPY → GSoC
- Now distributed as a SciKit
- Main developers from economics
- Consistent design for general statistical modeling
State of the Union

- R for applied statistics
- Econometrics - mainly proprietary software
 - Proprietary: GAUSS, MATLAB (time series/macro), Stata, SAS, NLOGIT, etc.
 - FLOSS: R (Finance, theoretical), gretl (both GPL)
Growing call for FLOSS in economic research and Python to be the language of choice for applied and theoretical econometrics

Choirat and Seri (2009), Bilina and Lawford (2009), Stachurski (2009), Isaac (2008)

Finance/ SEC - Asset Backed Securities

“we are proposing to require, along with the prospectus filing [in XML], the filing of a computer program of the contractual cash flow provisions expressed as downloadable source code in Python”

Related packages: PyMC, scikits-learn, PyMVPA, NIPY (nitime), matplotlib, PyTables, Biopython, Pyentropy, pandas, larry
Test-Driven Development

- TDD
- Reliability and Accuracy
- Transparency
Development Workflow

- Supports TDD
- Branches vs. Trunk
- Sandbox and code review
- Test results (R, Stata, SAS, Monte Carlo)
What is a Model?

- Object for data reduction
- Data: Endogenous and Exogenous
 - Terminology: Dependent/Independent, Regressand/Regressor, Response/Explanatory
- Statistical theory provides the relationship between the two
- Naturally leads to OO design
Base class: Model

```python
class Model(object):
    def __init__(self, endog, exog=None):
        self.endog = endog
        if exog is not None:
            self.exog = exog

    def fit(self):
        ...

    def predict(self):
        ...
```
Implementation Con’t

- Inheritance: LikelihoodModel

```python
class LikelihoodModel(Model):
    def __init__(self, endog, exog=None):
        super(LikelihoodModel, self).__init__(endog, exog)
        self.initialize()
    def initialize(self):
        pass
    def fit(self, start_params=None, method='newton',
            maxiter=100, full_output=True,
            disp=True, fargs=(), callback=None,
            retall=False, **kwargs):
        ...
        return LikelihoodModelResults(self, ...)
```
Implementation Con’t

- Results Objects

```python
class LikelihoodModelResults(Results, LLMTests):
    def __init__(self, model, ...):
        self.model = model
        ...
```

Package Overview

- Main model modules
 - regression
 - glm
 - rlm
 - discretemod
 - contrast

- Convenience functions
 - Descriptive Statistics, SimpleTable, Foreign I/O, ...

- Datasets
- Examples
Regression Example

- Import conventions

```python
>>> import scikits.statsmodels as sm
```

- OLS: $Y = X\beta + \varepsilon$ where $\varepsilon \sim N(0, \sigma^2)$

- Notation: \texttt{params} $\equiv \beta$

```python
>>> data = sm.datasets.longley.load()
>>> data.exog = sm.add_constant(data.exog)
>>> ols_model = sm.OLS(data.endog, data.exog)
>>> ols_results = ols_model.fit()
>>> ols_results.params
array([ 1.50618723e+01, -3.58191793e-02, -2.02022980e+00, -1.03322687e+00, -5.11041057e-02, 1.82915146e+03, -3.48225863e+06])
```
Regression Example Con’t

- A peak inside the `RegressionResults` object

```python
>>> [__ for __ in dir(ols_results) if not __.startswith('_')]
['HC0_se', 'HC1_se', 'HC2_se', 'HC3_se', 'aic', 'bic', 'bse', 'centered_tss', 'conf_int', 'cov_params', 'df_model', 'df_resid', 'ess', 'f_pvalue', 'f_test', 'fittedvalues', 'fvalue', 'initialize', 'llf', 'model', 'mse_model', 'mse_resid', 'mse_total', 'nobs', 'norm_resid', 'normalized_cov_params', 'params', 'pvalues', 'resid', 'rsquared', 'rsquared_adj', 'scale', 'ssr', 'summary', 't', 't_test', 'uncentered_tss', 'wresid']
```
```python
>>> print ols_results.summary()
```

Summary of Regression Results

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>'y'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>OLS</td>
</tr>
<tr>
<td>Method:</td>
<td>Least Squares</td>
</tr>
<tr>
<td>Date:</td>
<td>Tue, 22 Jun 2010</td>
</tr>
<tr>
<td>Time:</td>
<td>11:21:43</td>
</tr>
<tr>
<td># obs:</td>
<td>16.0</td>
</tr>
<tr>
<td>Df residuals:</td>
<td>9.0</td>
</tr>
<tr>
<td>Df model:</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>coefficient</th>
<th>std. error</th>
<th>t-statistic</th>
<th>prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>x1</td>
<td>15.0619</td>
<td>84.9149</td>
<td>0.1774</td>
</tr>
<tr>
<td>x2</td>
<td>-0.0358</td>
<td>0.0335</td>
<td>-1.0695</td>
</tr>
<tr>
<td>x3</td>
<td>-2.0202</td>
<td>0.4884</td>
<td>-4.1364</td>
</tr>
<tr>
<td>x4</td>
<td>-1.0332</td>
<td>0.2143</td>
<td>-4.8220</td>
</tr>
<tr>
<td>x5</td>
<td>-0.0511</td>
<td>0.2261</td>
<td>-0.2261</td>
</tr>
<tr>
<td>x6</td>
<td>1829.1515</td>
<td>455.4785</td>
<td>4.0159</td>
</tr>
<tr>
<td>const</td>
<td>-348258.6346</td>
<td>890420.3836</td>
<td>-3.9108</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Models stats</th>
<th>Residual stats</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-squared:</td>
<td>0.995479</td>
</tr>
<tr>
<td>Adjusted R-squared:</td>
<td>0.992465</td>
</tr>
<tr>
<td>F-statistic:</td>
<td>330.285</td>
</tr>
<tr>
<td>Prob (F-statistic):</td>
<td>4.98403e-10</td>
</tr>
<tr>
<td>Log likelihood:</td>
<td>-109.617</td>
</tr>
<tr>
<td>AIC criterion:</td>
<td>233.235</td>
</tr>
<tr>
<td>BIC criterion:</td>
<td>238.643</td>
</tr>
</tbody>
</table>
GLM Example

- \(Y = g(X\beta) + \varepsilon \) where, in this case, \(Y \sim B(\cdot) \) and \(g^{-1} \) is the link function such that \(\mu_y = g^{-1}(X\beta) \)
- Jeff Gill’s STAR data

```python
>>> data = sm.datasets.star98.load()
>>> data.exog = sm.add_constant(data.exog)
>>> links = sm.families.links
>>> glm_bin = sm.GLM(data.endog, data.exog,
...                   family=sm.families.Binomial(link=
...                                               links.logit)
>>> trials = data.endog.sum(axis=1)
>>> glm_results = glm_bin.fit(data_weights= trials)
```
GLM Example Con’t

- Look at interquartile difference in predicted success between groups

```python
>>> means = data.exog.mean(axis=0)
>>> means25 = means.copy()
>>> means75 = means.copy()

>>> from scipy.stats import scoreatpercentile as sap
>>> means25[0] = sap(data.exog[:, 0], 25)
>>> means75[0] = sap(data.exog[:, 0], 75)

>>> resp25 = glm_bin.predict(means25)
>>> resp75 = glm_bin.predict(means75)

>>> print "%4.2f percent" % ((resp75 - resp25) * 100)
-11.88 percent
```
Robust Standard Errors

- Bill Greene’s credit card data model.

\[
AVGEXP = \beta_1 + \beta_2 AGE + \beta_3 INC + \beta_4 INC^2 + \beta_5 OWNRENT
\]

```python
>>> data = sm.datasets.ccard.load()
>>> data.exog = sm.add_constant(data.exog)
>>> ols_fit = sm.OLS(data.endog, data.exog).fit()
```

- Problem: variance of errors might be assumed to increase with income (though we might not know exact functional form).
- Consequence: standard errors are underestimated.
Robust Standard Errors con’t
Robust Standard Errors Con’t

- White (1980) Robust Standard Errors: HC0

\[SE(\beta) = \sqrt{\text{diag} \left((X'X)^{-1} X' \hat{\varepsilon}_i^2 X (X'X)^{-1} \right)} \]

- Small sample analogues MacKinnon and White (1985): HC1

\[SE(\beta) = \sqrt{\text{diag} \left(\frac{n}{n-k-1} (X'X)^{-1} X' \hat{\varepsilon}_i^2 X (X'X)^{-1} \right)} \]

```python
>>> ols_fit.HC1_se
array([-3.42264107,  92.12260235,  7.19902694,  95.56573144,  220.79495237])
>>> ols_fit.bse
array([ 5.51471653,  80.36595035,  7.46933695,  82.92232357,  199.35166485])
>>> ols_fit.t()
array([-0.55883453,  2.91599895, -2.00778788,  0.33695279, -1.18958883])
>>> ols_fit.params/ols_fit.HC1_se
array([-0.90041987,  2.54386026, -2.08317656,  0.29237372, -1.07405768])
```
Consider the following static investment function for a macro economy

\[\ln I_t = \beta_1 + \beta_2 \ln Y_t + \beta_3 i_t + \beta_4 \Delta p_t + \beta_5 t + \epsilon_t \]

Suppose we believe that investors care only about real interest rates, that the marginal propensity to invest is unity, and that there is no linear time trend.

\[\ln I_t = \beta_1 + \ln Y_t + \beta_3 (i_t - \Delta p_t) + \epsilon_t \]

In terms of the first model, this implies

\[\beta_3 + \beta_4 = 0 \]
\[\beta_2 = 1 \]
\[\beta_5 = 0 \]
In terms of linear restrictions we have

\[R\beta = q \]

where

\[
R = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

and

\[
q = \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\]
>>> data = sm.datasets.macrodata.load()
>>> endog = np.log(data.data['realinv'][1:])
>>> exog = data.data[['realgdp', 'tbilrate', ...
 'infl']][1:].view((float, 3))
>>> exog[:,0] = np.log(exog[:,0])
>>> exog = sm.add_constant(exog, prepend=True)
>>> from scikits.statsmodels.sandbox.tsa.stattools\
... import add_trend # function will be moved
>>> exog = add_trend(exog, trend='t')
>>> inv_model = sm.OLS(endog, exog).fit()
Linear Restrictions Example Con't

```python
>>> R = [[0, 1, 0, 0, 0], [0, 0, 1, 1, 0], [0, 0, 0, 0, 1]]
>>> q = [1, 0, 0]

F-test with $H_0: R\beta = \hat{q}$.

```python
>>> Ftest = inv_model.f_test(R, q)
>>> print Ftest
<F test: F=array ([[194.4428894]]) ,
p=[[1.27044954e-58]], df_denom=197, df_num=3>
```

\[ \therefore \text{we can reject the null hypothesis that } R\beta = q. \]
We have three groups of subjects that share a common covariate.
Want to test that the mean effect on the three groups is the same.
Linear Restrictions as ANCOVA con’t

- Define R for linear model with group dummies and a constant
  \[ Y_i = \beta_1 X_i + \beta_2 \text{Group1} + \beta_3 \text{Group2} + \beta_4 + \epsilon \]

```python
>>> ancova_model = sm.OLS(y, X).fit()
>>> R = [[0, 1, 0, 0], [0, 0, 1, 0]]
>>> print(ancova_model.f_test(R))
<F test: F=array([[91.69986847]]), p=[[8.90826383e-17]], df_denom=46, df_num=2>
```

- Or as ANOVA, `f_test` is the same as `scipy.stats.f_oneway`

```python
>>> anova_model = sm.OLS(y, X[:, 1:]).fit()
>>> anova_model.f_test(R[:, 1:])
<F test: F=array([[122.07800238]]), p=[[2.43974538e-19]], df_denom=47, df_num=2>
>>> from scipy import stats
>>> stats.f_oneway(y[:20], y[20:40], y[40:])
(122.07800238379976, 2.439745379395912e-19)
```
RLM Example

```python
>>> norms = sm.robust.norms
>>> rlm_model = sm.RLM(y, X, M=norms.HuberT).fit()
```
Outlook

- The sandbox and GSoC 2010
  - Time series analysis and dynamic models, Panel data models, Nonparametric regression and kernel density estimators, System of equation models, and Maximum entropy estimators

- What else?
  - R-like formula framework
  - Statistics-oriented data structures and analysis

- Want to get involved?
  - Mailing list: http://groups.google.ca/group/pystatsmodels or scipy-user
  - Documentation: http://statsmodels.sourceforge.net/
  - Blog: http://scipystats.blogspot.com/
Summary

- **Statsmodels** is a library for statistical and econometric modeling in Python.
- **Python** is becoming a popular choice for statistical programming.
- A **foundation** for continuing development of statistics with the Python community.
For Further Reading I

J. Stachurski.  
*Economic Dynamics: Theory and Computation.*  

R. Bilina and S. Lawford.  
“Python for Unified Research in Econometrics and Statistics.”  

C. Choirat and R. Seri.  
“Econometrics with Python.”  
A. Isaac.
“Simulating Evolutionary Games: A Python-Based Introduction.”
Available at http://jasss.soc.surrey.ac.uk/11/3/8.html