Data structures for statistical computing in Python

Wes McKinney

SciPy 2010
Environments for statistics and data analysis

- The usual suspects: R / S+, MATLAB, Stata, SAS, etc.
- Python being used increasingly in statistical or related applications
 - scikits.statsmodels: linear models and other econometric estimators
 - PyMC: Bayesian MCMC estimation
 - scikits.learn: machine learning algorithms
 - Many interfaces to mostly non-Python libraries (pycluster, SHOGUN, Orange, etc.)
 - And others (look at the SciPy conference schedule!)
- How can we attract more statistical users to Python?
What matters to statistical users?

- Standard suite of linear algebra, matrix operations (NumPy, SciPy)
- Availability of statistical models and functions
 - More than there used to be, but nothing compared to R / CRAN
 - rpy2 is coming along, but it doesn’t seem to be an “end-user” project
- Data visualization and graphics tools (matplotlib, ...)
- Interactive research environment (IPython)
What matters to statistical users? (cont’d)

- Easy installation and sources of community support
- Well-written and navigable documentation
- Robust input / output tools
- Flexible data structures and data manipulation tools
Easy installation and sources of community support
Well-written and navigable documentation
Robust input/output tools
Flexible data structures and data manipulation tools
Statistical data sets

Statistical data sets commonly arrive in tabular format, i.e. as a two-dimensional list of *observations* and names for the fields of each observation.

```python
array([('GOOG', '2009-12-28', 622.87, 1697900.0),
       ('GOOG', '2009-12-29', 619.40, 1424800.0),
       ('GOOG', '2009-12-31', 619.98, 1219800.0),
       ('AAPL', '2009-12-28', 211.61, 23003100.0),
       ('AAPL', '2009-12-29', 209.10, 15868400.0),
       ('AAPL', '2009-12-31', 210.73, 12571000.0)],
      dtype=[('item', '|S4'), ('date', '|S10'),
             ('price', '<f8'), ('volume', '<f8')])
```
Structured arrays

- Structured arrays are great for many applications, but not always great for general data analysis
- Pros
 - Fast, memory-efficient, good for loading and saving big data
 - Nested dtypes help manage hierarchical data
Structured arrays

- Structured arrays are great for many applications, but not always great for general data analysis

- Pros
 - Fast, memory-efficient, good for loading and saving big data
 - Nested dtypes help manage hierarchical data

- Cons
 - Can’t be immediately used in many (most?) NumPy methods
 - Are not flexible in size (have to use or write auxiliary methods to “add” fields)
 - Not too many built-in data manipulation methods
 - Selecting subsets is often $O(n)$!
Structured arrays are great for many applications, but not always great for general data analysis

Pros
- Fast, memory-efficient, good for loading and saving big data
- Nested dtypes help manage hierarchical data

Cons
- Can’t be immediately used in many (most?) NumPy methods
- Are not flexible in size (have to use or write auxiliary methods to “add” fields)
- Not too many built-in data manipulation methods
- Selecting subsets is often $O(n)$!

What can be learned from other statistical languages?
R's data.frame

One of the core data structures of the R language. In many ways similar to a structured array.

```r
> df <- read.csv('data')

item  date    price  volume
1  GOOG 2009-12-28  622.87  1697900
2  GOOG 2009-12-29  619.40  1424800
3  GOOG 2009-12-30  622.73  1465600
4  GOOG 2009-12-31  619.98  1219800
5  AAPL 2009-12-28  211.61  23003100
6  AAPL 2009-12-29  209.10  15868400
7  AAPL 2009-12-30  211.64  14696800
8  AAPL 2009-12-31  210.73  12571000
```
R's `data.frame`

Perhaps more like a mutable dictionary of vectors. Much of R’s statistical estimators and 3rd-party libraries are designed to be used with `data.frame` objects.

```r
> df$isgoog <- df$item == "GOOG"

> df
  item   date  price volume isgoog
  1    GOOG 2009-12-28     622.87  1697900 TRUE
  2    GOOG 2009-12-29     619.40  1424800 TRUE
  3    GOOG 2009-12-30     622.73  1465600 TRUE
  4    GOOG 2009-12-31     619.98  1219800 TRUE
  5    AAPL 2009-12-28     211.61  23003100 FALSE
  6    AAPL 2009-12-29     209.10  15868400 FALSE
  7    AAPL 2009-12-30     211.64  14696800 FALSE
  8    AAPL 2009-12-31     210.73  12571000 FALSE
```
Began building at AQR in 2008, open-sourced late 2009

Many goals
- Data structures to make working with statistical or “labeled” data sets easy and intuitive for non-experts
- Create a both user- and developer-friendly backbone for implementing statistical models
- Provide an integrated set of tools for common analyses
- Implement statistical models
Began building at AQR in 2008, open-sourced late 2009

Many goals
- Data structures to make working with statistical or “labeled” data sets easy and intuitive for non-experts
- Create a both user- and developer-friendly backbone for implementing statistical models
- Provide an integrated set of tools for common analyses
- Implement statistical models!

Takes some inspiration from R but aims also to improve in many areas (like data alignment)
pandas library

- Began building at AQR in 2008, open-sourced late 2009
- Many goals
 - Data structures to make working with statistical or “labeled” data sets easy and intuitive for non-experts
 - Create a both user- and developer-friendly backbone for implementing statistical models
 - Provide an integrated set of tools for common analyses
 - Implement statistical models!
- Takes some inspiration from R but aims also to improve in many areas (like data alignment)
- Core idea: ndarrays with labeled axes and lots of methods
Began building at AQR in 2008, open-sourced late 2009

Many goals

- Data structures to make working with statistical or “labeled” data sets easy and intuitive for non-experts
- Create a both user- and developer-friendly backbone for implementing statistical models
- Provide an integrated set of tools for common analyses
- Implement statistical models!

Takes some inspiration from R but aims also to improve in many areas (like data alignment)

Core idea: ndarrays with labeled axes and lots of methods

Etymology: panel data structures
Basicly a pythonic `DataFrame`, but with automatic data alignment! Arithmetic operations align on row and column labels.

```python
>>> data = DataFrame.from_csv('data', index_col=None)
   date   item  price  volume
0  2009-12-28  GOOG   622.9  1.698e+06
1  2009-12-29  GOOG   619.4  1.425e+06
2  2009-12-30  GOOG   622.7  1.466e+06
3  2009-12-31  GOOG    620  1.22e+06
4  2009-12-28   AAPL   211.6   2.3e+07
5  2009-12-29   AAPL   209.1  1.587e+07
6  2009-12-30   AAPL   211.6  1.47e+07
7  2009-12-31   AAPL   210.7  1.257e+07
```

```python
>>> df['ind'] = df['item'] == 'GOOG'
```
How to organize the data?

Especially for larger data sets, we’d rather not pay $O(\# \text{obs})$ to select a subset of the data. $O(1)$-ish would be preferable.

```python
data['item'] == 'GOOG'
array([('GOOG', '2009-12-28', 622.87, 1697900.0),
      ('GOOG', '2009-12-29', 619.40, 1424800.0),
      ('GOOG', '2009-12-30', 622.73, 1465600.0),
      ('GOOG', '2009-12-31', 619.98, 1219800.0)],
      dtype=[('item', 'S4'), ('date', 'S10'),
             ('price', '<f8'), ('volume', '<f8')])
```
How to organize the data?

Really we have data on three dimensions: date, item, and *data type*. We can pay upfront cost to *pivot* the data and save time later:

```python
>>> df = data.pivot('date', 'item', 'price')
>>> df
          item
date       AAPL   GOOG
2009-12-28  211.6   622.9
2009-12-29  209.1   619.4
2009-12-30  211.6   622.7
2009-12-31  210.7   620
```
How to organize the data?

In this format, grabbing labeled, lower-dimensional slices is easy:

```python
>>> df['AAPL']
2009-12-28    211.61
2009-12-29    209.1
2009-12-30    211.64
2009-12-31    210.73
```

```python
>>> df.xs('2009-12-28')
AAPL    211.61
GOOG    622.87
```
Data alignment

Data sets originating from different files or different database tables may not always be homogenous:

<table>
<thead>
<tr>
<th></th>
<th>>>> s1</th>
<th></th>
<th>>>> s2</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL</td>
<td>0.044</td>
<td>AAPL</td>
<td>0.025</td>
</tr>
<tr>
<td>IBM</td>
<td>0.050</td>
<td>BAR</td>
<td>0.158</td>
</tr>
<tr>
<td>SAP</td>
<td>0.101</td>
<td>C</td>
<td>0.028</td>
</tr>
<tr>
<td>GOOG</td>
<td>0.113</td>
<td>DB</td>
<td>0.087</td>
</tr>
<tr>
<td>C</td>
<td>0.138</td>
<td>F</td>
<td>0.004</td>
</tr>
<tr>
<td>SCGLY</td>
<td>0.037</td>
<td>GOOG</td>
<td>0.154</td>
</tr>
<tr>
<td>BAR</td>
<td>0.200</td>
<td>IBM</td>
<td>0.034</td>
</tr>
<tr>
<td>VW</td>
<td>0.040</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Data alignment

Arithmetic operations, etc., match on axis labels. Done in Cython so significantly faster than pure Python.

```python
>>> s1 + s2
AAPL    0.0686791008184
BAR     0.358165479807
C       0.16586702944
DB      0.367679872693
F       NaN
GOOG    0.26666583847
IBM     0.0833057542385
SAP     NaN
SCGLY   NaN
VW      NaN
```
Missing data handling

Since data points may be deemed “missing” or “masked”, having tools for these makes sense.

```python
>>> (s1 + s2).fill(0)
AAPL  0.0686791008184
BAR   0.358165479807
C     0.16586702944
DB    0.367679872693
F     0.0
GOOG  0.266666583847
IBM   0.0833057542385
SAP   0.0
SCGLY 0.0
VW    0.0
```
Missing data handling

```python
>>> (s1 + s2).valid()
AAPL 0.0686791008184
BAR  0.358165479807
C    0.16586702944
DB   0.367679872693
GOOG 0.26666583847
IBM  0.0833057542385

>>> (s1 + s2).sum()
1.3103630754662747

>>> (s1 + s2).count()
6
```
Categorical data and “Group by”

Often want to compute descriptive stats on data given group designations:

```python
>>> s
>>> cats
industry

<table>
<thead>
<tr>
<th>Company</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL</td>
<td>0.044</td>
</tr>
<tr>
<td>IBM</td>
<td>0.050</td>
</tr>
<tr>
<td>SAP</td>
<td>0.101</td>
</tr>
<tr>
<td>GOOG</td>
<td>0.113</td>
</tr>
<tr>
<td>C</td>
<td>0.138</td>
</tr>
<tr>
<td>SCGLY</td>
<td>0.037</td>
</tr>
<tr>
<td>BAR</td>
<td>0.200</td>
</tr>
<tr>
<td>DB</td>
<td>0.281</td>
</tr>
<tr>
<td>VW</td>
<td>0.040</td>
</tr>
<tr>
<td>RNO</td>
<td>AUTO</td>
</tr>
<tr>
<td>F</td>
<td>AUTO</td>
</tr>
<tr>
<td>TM</td>
<td>AUTO</td>
</tr>
</tbody>
</table>
```

Statistical Data Structures in Python

McKinney ()

SciPy 2010 19 / 31
R users are spoiled by having vector recognized as something you might want to “group by”:

```r
> labels
[1] GOOG GOOG GOOG AAPL AAPL AAPL
Levels: AAPL GOOG
> data
[1] 622.87 619.40 622.73 619.98 211.61 209.10
    211.64 210.73

> tapply(data, labels, mean)
     AAPL    GOOG
210.770  621.245
```
GroupBy in pandas

We try to do something similar in pandas; the input can be any function or dict-like object mapping labels to groups:

```python
>>> data.groupby(labels).aggregate(np.mean)
AAPL      210.77
GOOG   621.245
```
More fancy things are possible, like “transforming” groups by arbitrary functions:

```python
demean = lambda x: x - x.mean()

def group_demean(obj, keyfunc):
    grouped = obj.groupby(keyfunc)
    return grouped.transform(demean)
```

```python
>>> group_demean(s, ind)
AAPL   -0.0328370881632
BAR    0.0358663891836
C      -0.0261271326111
DB     0.11719543981
GOOG   0.035936259143
IBM    -0.0272802815728
SAP    0.024181110593
```
Merging data sets

One commonly encounters a group of data sets which are not quite identically-indexed:

```python
>>> df1
   AAPL   GOOG
2009-12-24   209   618.5
2009-12-28   211.6  622.9
2009-12-29   209.1  619.4
2009-12-30   211.6  622.7
2009-12-31   210.7  620

>>> df2
   MSFT   YHOO
2009-12-24   31     16.72
2009-12-28   31.17  16.88
2009-12-29   31.39  16.92
2009-12-30   30.96  16.98
```
Merging data sets

By default gluing these together on the row labels seems reasonable:

```python
>>> df1.join(df2)

<table>
<thead>
<tr>
<th></th>
<th>AAPL</th>
<th>GOOG</th>
<th>MSFT</th>
<th>YHOO</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-24</td>
<td>209</td>
<td>618.5</td>
<td>31</td>
<td>16.72</td>
</tr>
<tr>
<td>2009-12-28</td>
<td>211.6</td>
<td>622.9</td>
<td>31.17</td>
<td>16.88</td>
</tr>
<tr>
<td>2009-12-30</td>
<td>209.1</td>
<td>619.4</td>
<td>30.96</td>
<td>16.98</td>
</tr>
<tr>
<td>2009-12-31</td>
<td>210.7</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
</tbody>
</table>
```
Merging data sets

Returning to our first example, one might also wish to join on some other key:

```python
>>> df.join(cats, on='item')
```

<table>
<thead>
<tr>
<th>date</th>
<th>industry</th>
<th>item</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-28</td>
<td>TECH</td>
<td>GOOG</td>
<td>622.9</td>
</tr>
<tr>
<td>2009-12-29</td>
<td>TECH</td>
<td>GOOG</td>
<td>619.4</td>
</tr>
<tr>
<td>2009-12-30</td>
<td>TECH</td>
<td>GOOG</td>
<td>620</td>
</tr>
<tr>
<td>2009-12-28</td>
<td>TECH</td>
<td>AAPL</td>
<td>211.6</td>
</tr>
<tr>
<td>2009-12-29</td>
<td>TECH</td>
<td>AAPL</td>
<td>209.1</td>
</tr>
<tr>
<td>2009-12-30</td>
<td>TECH</td>
<td>AAPL</td>
<td>211.6</td>
</tr>
<tr>
<td>2009-12-31</td>
<td>TECH</td>
<td>AAPL</td>
<td>210.7</td>
</tr>
</tbody>
</table>
Manipulating panel (3D) data

In finance, econometrics, etc. we frequently encounter *panel data*, i.e. multiple data series for a group of individuals over time:

```python
>>> grunfeld
                  capita   firm  inv    value   year
         0      2.8     1    317.6   3078     1935
         20     53.8    2    209.9   1362     1935
         40     97.8    3     33.1   1171     1935
         60     10.5    4    40.29   417.5     1935
        100      6.5    6    20.36    197     1935
        120    100.2    7    24.43    138     1935
        140      1.8    8    12.93   191.5     1935
        160     162    9    26.63   290.6     1935
        180      4.5   10     2.54    70.91     1935
         1     52.6    1    391.8   4662     1936
...
Manipulating panel (3D) data

What you saw was the “stacked” or tabular format, but the 3D form can be more useful at times:

```python
>>> lp = LongPanel.fromRecords(grunfeld, 'year', 'firm')

>>> wp = lp.toWide()

Dimensions: 3 (items) x 20 (major) x 10 (minor)
Items: capital to value
Major axis: 1935 to 1954
Minor axis: 1 to 10
```
What you saw was the “stacked” or tabular format, but the 3D form can be more useful at times:

```python
>>> wp[‘capital’].head()
 1935 1936 1937 1938 1939
 1 2.8 265 53.8 213.8 97.8
 2 52.6 402.2 50.5 132.6 104.4
 3 156.9 761.5 118.1 264.8 118
 4 209.2 922.4 260.2 306.9 156.2
 5 203.4 1020 312.7 351.1 172.6
 6 207.2 1099 254.2 357.8 186.6
 7 255.2 1208 261.4 342.1 220.9
 8 303.7 1430 298.7 444.2 287.8
 9 264.1 1777 301.8 623.6 319.9
 10 201.6 2226 279.1 669.7 321.3
```
Manipulating panel (3D) data

What you saw was the “stacked” or tabular format, but the 3D form can be more useful at times:

```python
mean over time for each firm
>>> wp.mean(axis='major')
capital inv value
1 140.8 98.45 923.8
2 153.9 131.5 1142
3 205.4 134.8 1140
4 244.2 115.8 872.1
5 269.9 109.9 998.9
6 281.7 132.2 1056
7 301.7 169.7 1148
8 344.8 173.3 1068
9 389.2 196.7 1236
10 428.5 197.4 1233
```
Implementing statistical models

- Common issues
  - Model specification (think R formulas)
  - Data cleaning
  - Attaching metadata (labels) to variables
- To the extent possible, should make the user’s life easy
- Short demo
Let’s attract more (statistical) users to Python by providing superior tools!

Related projects: larry (la), tabular, datarray, others...

Come to the BoF today at 6 pm

pandas Website: http://pandas.sourceforge.net

Contact: wesmckinn@gmail.com